189 8069 5689

python递归法如何解决棋盘分割问题-创新互联

小编给大家分享一下python递归法如何解决棋盘分割问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

创新互联主营公主岭网站建设的网络公司,主营网站建设方案,成都app开发,公主岭h5成都微信小程序搭建,公主岭网站营销推广欢迎公主岭等地区企业咨询

题目描述:将一个8*8的棋盘进行分割,将原棋盘分割下一个矩阵,同时确保剩下的棋盘也是矩阵;
再将剩下的棋盘继续进行如上分割,这样割(n-1)次,最后原棋盘被分割成n块矩形棋盘;
注意:每次分割只能沿着棋盘格子的边进行分割

原棋盘每个格子都有一个分值,一个矩形棋盘的总分,为所含各格分值之和;

其中,Xi为第i块矩形棋盘的总分

对给出的棋盘和n,使得矩形棋盘总分的均方差最小,并输出

python递归法如何解决棋盘分割问题

分析思路:

python递归法如何解决棋盘分割问题

程序代码:

# -*- coding: utf-8 -*-
"""
Created on Mon Mar 12 09:55:35 2018
@author: lizihua
将一个8*8的棋盘进行分割,将原棋盘分割下一个矩阵,同时确保剩下的棋盘也是矩阵;
再将剩下的棋盘继续进行如上分割,这样割(n-1)次,最后原棋盘被分割成n块矩形棋盘;
注意:每次分割只能沿着棋盘格子的边进行分割
原棋盘每个格子都有一个分值,一个矩形棋盘的总分,为所含各格分值之和;
其中,Xi为第i块矩形棋盘的总分
对给出的棋盘和n,使得矩形棋盘总分的均方差最小,并输出
"""
 
import numpy as np
import math
 
n=int(input("请输入分割次数:"))
#每个格子的分值
s=np.zeros((8,8))
for i in range(8):
  s[i]=input("请输入第"+str(i)+"行各格的分值:").split(' ')
  #将line中的元素转换为整型
  s[i] = list(map(int, s[i]))
 
zero1=np.zeros(8)
zero2=np.zeros(9)
#向s中的最上面加入一行0
s=np.insert(s,0,values=zero1,axis=0)
#向s中的第一列加入一列0
s=np.insert(s,0,values=zero2,axis=1)
res=np.ones((15,8,8,8,8))*(-1) #fun的记录表
sums=np.zeros((9,9))       #(1,1)到(i,j)的矩形分值之和
res=np.ones((15,9,9,9,9))*(-1) #fun的记录表
sums=np.zeros((9,9))       #(1,1)到(i,j)的矩形分值之和
for i in range(1,9):
  #rowsum是列之和,所以当i变化时,rowsum要清零
  rowsum=0
  for j in range(1,9):
    
    rowsum+=s[i][j]
    sums[i][j]+=sums[i-1][j]+rowsum
 
print(sums)
 
#(x1,y1)到(x2,y2)的矩形分值之和
def calsum(x1,y1,x2,y2):
  return sums[x2][y2]-sums[x2][y1-1]-sums[x1-1][y2]+sums[x1-1][y1-1]
 
#定义递归函数fun()
def fun(n,x1,y1,x2,y2):
  #注意:MIN是局部变量,一定在函数里赋值,否则结果会有问题
  MIN=10000000
  if res[n][x1][y1][x2][y2] != -1:
    return res[n][x1][y1][x2][y2]
  if n==1:
    t=calsum(x1,y1,x2,y2)  #分割后的矩形棋盘(不再分割的那块)的总分
    res[n][x1][y1][x2][y2]=t*t   #Xi*Xi
    return t*t
  for i in range(x1,x2):
    a=calsum(x1,y1,i,y2)
    c=calsum(i+1,y1,x2,y2)
    t=min(fun(n-1,x1,y1,i,y2)+c*c,fun(n-1,i+1,y1,x2,y2)+a*a)
    if t

结果显示:

python递归法如何解决棋盘分割问题

以上是“python递归法如何解决棋盘分割问题”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注创新互联成都网站设计公司行业资讯频道!

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


网站标题:python递归法如何解决棋盘分割问题-创新互联
网站链接:http://cdxtjz.cn/article/cdoghs.html

其他资讯