隐函数一般是一个含x,y的方程如e^y+x^2+x=0这种形式。由于形式复杂,y不容易变形为用含x的式子表示,即不易表示为y=f(x)。
创新互联公司是一家集成都做网站、网站设计、外贸营销网站建设、网站页面设计、网站优化SEO优化为一体的专业网络公司,已为成都等多地近百家企业提供网站建设服务。追求良好的浏览体验,以探求精品塑造与理念升华,设计最适合用户的网站页面。 合作只是第一步,服务才是根本,我们始终坚持讲诚信,负责任的原则,为您进行细心、贴心、认真的服务,与众多客户在蓬勃发展的市场环境中,互促共生。
只要不是可以将因变量用自变量来表示的,都可以算隐函数,也就是因变量自变量无法分开。
如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。
如果方程f(x,y)=0能确定y与x的对应关系,那么称这种表示方法表示的函数为隐函数。反之则不是。
有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。
z=yln(xy)不是隐函数。是二元函数,有两个自变量x,y、一个因变量z,即 z=f(x,y)一元函数的隐函数:f(x,y)=0,应变量y是自变量x的函数,只是无法用y=f(x)这样的显函数来表达。
1、如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。
2、隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)等于0,则称方程确定了一个隐函数。记为y等于y(x)。
3、f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)= 0的形式,然后通过(式中FyFx分别表示y和x对z的偏导数)来求解。
4、例子见下图 首先对方程求z对x的偏导数,利用方程式求出z对x的偏导数。然后在之前求出的等式上再求对x的偏导数,然后利用(1)求出的,即可解出。
5、解出来。隐函数的微分方法有两种:第一种方法:将x、y看成等同地位,谁也不是谁的函数,方程两边微分,解出dy即可。第二种方法:链式求导,chain rule。
1、显函数:解析式中明显地用一个变量的代数式表示另一个变量时,称为显函数。显函数可以用y=f(x)来表示。隐函数:如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。
2、隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。
3、有些隐函数可以表示成显函数,叫做隐函数显化,但也有些隐函数是不能显化的,比如e^y+xy=1。