189 8069 5689

斐波拉契的变形题-创新互联

一只青蛙一次可以跳上 1 级台阶,也可以跳上2 级。求该青蛙跳上一个n 级的台阶总共有多少种跳法

成都创新互联坚持“要么做到,要么别承诺”的工作理念,服务领域包括:成都网站设计、成都网站制作、企业官网、英文网站、手机端网站、网站推广等服务,满足客户于互联网时代的平湖网站设计、移动媒体设计的需求,帮助企业找到有效的互联网解决方案。努力成为您成熟可靠的网络建设合作伙伴!

假设,一级台阶,有f(1)种方法,二级有f(2)种,以此类推,n级有f(n)种方法。

可以看出,f(1)=1;f(2)=2。

那么,假设n级台阶,那么第一步就有两种情况,跳一步,跟跳两步。

情况一:跳一步,那么接下去的就是f(n-1);

情况二:跳两步,那么接下去的就是f(n-2)。

所以总数是f(n)=f(n-1)+f(n-2)。

public int  cal(int n){
    if(n<=0){
        return -1;
    }
    if(n==1||n==2){
        return n;
    }
    else{
        return cal(n-1)+cal(n-2);
    }
}

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

假设f(n)是n个台阶跳的次数。

  1. f(1) = 1

  2. f(2) 会有两个跳得方式,一次1阶或者2阶,这回归到了问题f(1),f(2) = f(2-1) + f(2-2)

  3. f(3) 会有三种跳得方式,1阶、2阶、3阶,那么就是第一次跳出1阶后面剩下:f(3-1);第一次跳出2阶,剩下f(3-2);第一次3阶,那么剩下f(3-3).因此结论是
    f(3) = f(3-1)+f(3-2)+f(3-3)

  4. f(n)时,会有n中跳的方式,1阶、2阶...n阶,得出结论:

f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) => f(0) + f(1) + f(2) + f(3) + ... + f(n-1) == f(n) = 2*f(n-1)

public long jumpFloor(int n) {
    if (n <= 0)
        return -1;
    if (n == 1)
        return 1;
    return 2 * jumpFloor(n - 1);
}

考虑到效率,也可以改成迭代来做。

另外有需要云服务器可以了解下创新互联scvps.cn,海内外云服务器15元起步,三天无理由+7*72小时售后在线,公司持有idc许可证,提供“云服务器、裸金属服务器、高防服务器、香港服务器、美国服务器、虚拟主机、免备案服务器”等云主机租用服务以及企业上云的综合解决方案,具有“安全稳定、简单易用、服务可用性高、性价比高”等特点与优势,专为企业上云打造定制,能够满足用户丰富、多元化的应用场景需求。


当前文章:斐波拉契的变形题-创新互联
网站链接:http://cdxtjz.cn/article/ddpspe.html

其他资讯