public class Max {
创新互联主营屏南网站建设的网络公司,主营网站建设方案,重庆APP软件开发,屏南h5成都小程序开发搭建,屏南网站营销推广欢迎屏南等地区企业咨询
public static void main(String[] args) {
int[] y= {0,9,4,8,2,12,444,5,-1,-22,45};
int max = m(y);
int min = mm(y);
System.out.println("最大值 "+max);
System.out.println("最小值 "+min);
System.out.println("差值 "+max-min);
}
public static int m(int[] p){
int max=0;
for (int i=0;ip.length;i++){
if(p[i]=max){
max=p[i];
}
}
return max;
}
public static int mm(int[] p){
int min=p[0];
for (int i=1;ip.length;i++){
if(p[i]=min){
min=p[i];
}
}
return min;
}
}
import java.util.Arrays;
public class Test {
public static void getCha(int [] a,int []b){
int min =Integer.MAX_VALUE;
int sss=0;
int kkk = 0;
int c = 0;
int d = 0;
for (int i = 0; i a.length; i++) {
for (int j = 0; j b.length; j++) {
int temp = Math.abs(a[i]-b[j]);
if(tempmin){
min = temp;
sss = a[i];
kkk = b[j];
c=i;
d=j;
}
}
}
System.out.println("最大差距:"+min+"数组A["+c+"]"+sss+"数组B["+d+"]"+kkk);
}
public static void main(String[] args) {
int []a = new int[8];
int []b = new int[12];
for (int i = 0; i a.length; i++) {
a[i] = (int)( Math.random()*100);
}
System.out.println(Arrays.toString(a));;
for (int i = 0; i b.length; i++) {
b[i] = (int) (Math.random()*100);
}
System.out.println(Arrays.toString(b));
getCha(a,b);
}
}
n个节点的二叉排序树在最坏的情况下的平均查找长度为(n+1)/2。
二叉排序树每个结点的C(i)为该结点的层次数。最坏情况下,当先后插入的关键字有序时,构成的二叉排序树蜕变为单支树,树的深度为其平均查找长度(n+1)/2(和顺序查找相同),最好的情况是二叉排序树的形态和折半查找的判定树相同,其平均查找长度和log 2 (n)成正比。
计算方法
最差适应算法(Worst Fit)为适应此算法,空闲分区表(空闲区链)中的空闲分区要按大小从大到小进行排序,自表头开始查找到第一个满足要求的自由分区分配。该算法保留小的空闲区,尽量减少小的碎片产生。
最差适应算法,也称最差适配算法,它从全部空闲区中找出能满足作业要求的、且大小最大的空闲分区,从而使链表中的结点大小趋于均匀,适用于请求分配的内存大小范围较窄的系统。