189 8069 5689

GIS工程技术设计报告 gis课程设计

简述GIS工程中的文档种类及作用

(1)总体设计说明书,包括系统目标、总体设计、数据设计、处理方式设计、运行设计等;

成都创新互联服务项目包括洞口网站建设、洞口网站制作、洞口网页制作以及洞口网络营销策划等。多年来,我们专注于互联网行业,利用自身积累的技术优势、行业经验、深度合作伙伴关系等,向广大中小型企业、政府机构等提供互联网行业的解决方案,洞口网站推广取得了明显的社会效益与经济效益。目前,我们服务的客户以成都为中心已经辐射到洞口省份的部分城市,未来相信会继续扩大服务区域并继续获得客户的支持与信任!

◆引言:编写的目的、背景、意义、参考资料

◆总体设计:需求规定、运行环境、基本设计概念和处理流程、软件结构

◆接口设计:用户接口、外部接口、内部接口

◆运行设计:运行模块组合、运行控制、运行时间

◆系统数据结构设计:逻辑结构设计、物理结构设计、数据结构与程序的关系

◆系统出错处理设计:出错信息、补救措施、系统恢复设计

(2)数据库设计说明书,包括所用数据库简介、数据模式设计、物理设计等。

(主要给出所使用的数据库管理系统DBMS简介,数据库的概念模型、逻辑设计和结果。)

(3)用户手册,对需求分析阶段编写的初步的用户手册进行审订;

(4)制定初步的测试计划,对测试的策略、方法和步骤提出明确的要求。

根据GIS工程学思想开展GIS设计其基本原则和工作内容分别是什么

GIS设计的基本原则

基本原则

具体内容

标准化

符合GIS的基本要求和标准;符合现有的国家标准和行业规范

先进性

硬件设备的先进性;软件设计的先进性;技术方法的先进性;管理手段的先进性

兼容性

数据具有可交换性,选择标准的数据格式和实现数据格式转换功能,实现与不同数据库之间的数据共享

高效性

具有高效率的数据采集工艺方法和图形处理能力、存取能力、管理能力等等

可靠性

保证系统正常运行以及系统运行结果的正确性

通用性

系统数据组织灵活,可以满足不同应用分析的需求

GIS设计的内容: (一)软件设计(二)数据库设计

帮忙找下关于GIS的

【现状】

中国GIS行业发展探讨与分析(转自)

学者们都说中国GIS市场巨大,GIS产业发展迅猛,但是我认为,中国的GIS是彷徨的。那么,读者一定会问为什么?

正文之前,我们先解释什么是彷徨。彷徨指徘徊,走来走去,不知道往哪里走好;犹豫不决;没有方向。

好,明白了什么事彷徨,读者应该已经明白中国GIS事业所处的状态了。那么开始正文部分:

首先,我们几乎没有前沿的自主技术(我说这话很多所谓的自主研发的GIS厂商会生气,在此表示抱歉,良药苦口啊!)。国内的开发市场主要分为两股力量:1、商业二次开发;2、开源GIS的商业开发。

前一个大部分使用的是ESRI、GeoMedia、MapX,超图(superMap,中国少有的自主研发公司)也占有一定的份额,中地(MapGIS,个人认为中地并不是企业,而是政府机构)、GeoBean(地网开发方面资料太少了,不过功能还行)等的开发集中在政府外包的项目和学校科研。

后一个是雨后春笋一样的开源掘金队伍,发现了国外的开源GIS是免费的,便用来做商业开发,成为了国内发展较快的GIS队伍的生力军。的确,我就是后一个队伍的一员,但是我心中存在淡淡的隐忧,我们不论是用人家的API还是OGC的开发标准,都是在追着洋人的屁股跑。

其次,国内的GIS以开发为主的情况下,并没有出现能够真正的提供GIS服务的供应商和研发商,没有形成产业循环,而只是企业内行为,无法形成外部循环经济效益。就其原因,主要是商业项目太少并且政府项目招标环节存在一定的“关系因素”,即招标部门养着一个专门用来投标开发的GIS开发企业,不论这样是经济的还是不经济的,都能够为招标的部门谋取一定的“利润”。总的来说,GIS还是处于事业单位的发展模式下,真正的GIS市场秩序并没有建立起来。市场上存在大量的没有断奶的所谓企业,这样企业的竞争力严重不足,开发创新精神严重缺乏!

第三,中国GIS应用的民用度不高,GIS到底是发展大众方向还是主要以承包地理信息系统工程项目为主业内还存在一定的争议。到现在,我们国内也没有出现真正的GIS大众商业运作模式,这种模式还需要继续探索。一旦GIS产业发展走向大众化,就存在产业泡沫的问题,例如我们年初所看到的GIS与GDP发展的互动关系。我们急需一种比较完整的商业模式来运作GIS产业,而不是像“小作坊”一样的包项目生产,这样的项目不可能永远存在。

第四,政府对于GIS产业的政策不明朗,中央政府对于GIS的立场是支持的,但是迫于GIS项目的敏感性,所以很多的项目无法推行。地方上,各个政府机关的小利益矛盾比较尖锐,项目推行受到多方面非技术因素的影响,直接导致了很多的项目“流产”或“空壳”。从而影响了中国GIS的走向。

第五,GIS教育多而不精,缺乏实践教育,学生毕业后就业压力巨大,GIS市场的容量并不能消化这些毕业生,导致人才流失。大量的毕业生考研后继续失业,毕业生转行成为风尚,甚至出现了学校GIS专业没有人做GIS的尴尬情况。这导致了中国GIS人才的缺口增大,GIS从业者创新能力下降。当然,这个问题是应试教育引起的,也普遍的存在于其他专业!

第六,也是最关键的一条,就是我们正在逐渐的丧失创新能力,并且缺乏有效的风险投资作为GIS产业发展的支持,相比于GIS来说,房地产、道路建设、贸易等产业更加实际,更加的赚钱。因此,GIS人必须寻找一种适合我们自己的融资方式和商业模式来改变这种问题。

其实不管是业界还是技术的前沿 都把gis的软件开发策略作为一段时间或者是长期的规划来处理 这样基本上覆盖了gis核心服务的模型构架 使得服务的方向较为单一 不能很好的实行大众化的服务 这个固然跟眼前的政府政策有很大的关系 但是业界自己的发展探寻是不是也应该重新审视一下自己的阶段成果呢!

gid在中国的发展已有二三十年了吧 不论是早期的技术引进还是目前的自主研发(当然研发力度还远远不及国外的同行 这方面esri就是好的榜样)都还有很大的提升空间 而有些业内人士由于正好看好了这个态势 也大胆猜想GIS将会渗透各个领域各个行业 也将是IT的另一大主流方向 这话有一定的道理 在某种程度上也能很好的体现GIS发展的前景

【GIS对经济、社会作用】

一、GIS技术的兴起 为了解决人类所面临的人口、资源、环境和可持续发展等问题,协调自然与社会间的矛盾,以保障社会经济的可持续发展,必须采用现代的各种信息技术。GIS在其中发挥重要作用,而得到了各国政府和社会团体的广泛关注。很多国家都建立起国家性和地区性地理信息研究中心,发布有关行政法令,进行地理信息系统研究,培养人才,以满足地理信息系统迅速发展的需要。 以美国为例,1988年统计,84%的联邦机构已使用和计划使用地理信息系统,7万多个地方政府机构已建立了GIS服务系统。政府对地理信息产业的投入每年约为16.5亿美元。1992年,仅美国地质调查局的空间数据库投入就达7.54亿美元。随着美国地理信息产业的发展,每年的应用项目多达一万个以上,降低成本5—10亿美元,并新创产值在10亿美元,并新创产值在10亿美元以上。 美国总统克林顿于1994年4月11日签发了“协调地理数据的获取和使用:国家空间数据基础设施(NSDI)”的行政命令。该行政令要求成立联邦地理数据委员会(FGDC),发展国家地理空间数据交换网络(NGDC),在FGDC组织下制定数据标准,并在2000年1月完成美国的国家数字地理空间数据框架(NDGDF),以支持在2000年将展开的十年一度的人口普查。 近年来,地理信息系统技术发展极为迅速,并向着集成化和商品化发展,开始形成比较完整的地理信息产业。1994年,全球地理信息系统及其相关产业的年产值已达31亿美元,年增长率在35%以上。 我国是一个发展中大国,人口基数大,经济基础差,人均资源占有量少且地区分布不平衡,环境污染严重,生态系统脆弱,长期以来对粗放型经济增长的追求使得我国的资源与环境问题更加恶化。中国政府充分的认识到这种局面,于1994年出台了《中国21世纪议程—中国21世纪人口、环境和发展白皮书》,在中国共产党十四届五中全会上把可持续发展列为基本国策之一。地理信息系统,作为一种空间技术,与人类的生存、地区的发展和进步关系密切。地理信息系统将为人类解决全球与地区环境与发展问题,实现社会经济可持续发展目标做出重要贡献。 经过15年的发展,地理信息系统在我国得到了很大的发展,其应用前景与价值已得到有关部门的认识与重视,目前开展地理信息系统工作的部门已超过20个。我国已建成2个地理信息系统国家重点实验室,建成2个地理信息系统国家重点实验室,建成国土基础地理信息系统1:100万数据库和十多个较大规模的信息系统。通过“八五”国家科技攻关,地理信息系统技术逐渐从实验、局部走向实用化、集成化和产业化,在重大自然灾害的监测与评估、重要产粮区主要农作物估产、城市交通管理等方面取得突破性进展,产生了明显的社会、经济效益。 地理信息系统的在我国的应用虽然取得了很大成就,但与美国等先进国家相比,在应用的规模和深度上还存在较大的差距。中国的国民生产总值为4300亿美元,据外商估算,1993年的GIS投入为2000万美元,占国民生产总值的0.47/1000,与美国的3.3/10000相比差一个数量级。目前建立的GIS专业应用系统大多属面向具体项目的GIS,研究成果多,实用系统少,普遍存在利用绿低,效益不高,重开发轻应用的状况。在国产GIS基础软件开发方面,也存在投资和开发力量分散、低水平重复开发普遍,开发周期长,效率低,产品功能雷同,商品化程度低等问题。同时在地理信息获取方面也存在着重复投资多,信息的质量问题也比较严重,信息的标准化还需进一步加强等问题。 地理信息系统有着广泛的社会需求和广阔的应用领域。近年来,国民经济建设、国民经济管理和人民生活与社会发展对地理信息产品和服务的需求逐步增加。一方面各级政府部门或国民经济管理机构、业务部门要求及时地了解和掌握国民经济建设和社会发展在地域空间上的运行状态、分布特征、资源环境条件和社会经济基础等方面的地理信息。另一方面,在商业、运输等部门,为了更好的管理日常业务,并进行各种分析评价工作,也开始使用地理信息系统。随着世界性高速信息网络的建设,地理信息系统开始进入家庭和日常办公场所。 今后五年以至到2000年是我国改革和发展的关键时期。我国经济将持续快速发展,基础工业、基础设施建设大规模展开,城市化发展加快,而人口、资源、环境压力很大。这段时间内,我国将实现经济体制和经济增长方式的重要转型和转变。坚持可持续发展,逐步缩小地区发展差距,基本消除绝对贫困是这一时期的基本方针和任务。与此同时,面向21世纪信息时代的来临,我们必须抓住机遇,加速国民经济信息化进程,在信息基础设施的建设方面迈出较大步伐。 这一时期也是我国GIS发展十分关键的时期。必须从国内外GIS发展的现状和趋势出发,根据这一时期国家经济和社会发展的要求和国情、国力,考虑这一时期我国GIS发展的规划、战略、政策和措施。遵循我国信息化建设“统筹规划、联合建设、统一标准、专通结合”的总方针,大力推进我国GIS的实用化和产业化。 二、GIS在当代学科体系中的地位 地理信息系统是一种特定的处理地理信息的信息系统,它的定义多种多样,是一种覆盖领域十分广泛的高新技术。 地理信息,由于它具有区域性、多维性和时序性,是人类生存和社会活动中连接各种信息,形成在空间和时间上连续分布的综合信息的基础。它是解决人口、资源与环境和社会可持续发展所面临的各种问题和促进国民经济持续、快速和健康发展的基本信息手段。 地理信息系统所依托的学科称为“地理信息学”(Geomatics),它是一个现代的科学术语,代表了用各种现代化方法来采集、量测、分析、存贮、管理、显示、传播和应用与地理和空间分布有关的数据的一门综合和集成的信息科学,是当前的测绘学、摄影测量与遥感、地图学、地理信息系统、计算机图像图形学、卫星定位技术与现代通讯技术的有机结合。 地理信息系统是以上多学科集成的基础平台,用作搜集、存贮、管理和分析空间信息和数据。卫星定位、遥感和摄影测量是是快速获取和更新地理信息的主要手段,目前正走向全数字化道路。地图学与图像图形学既用作地理信息的分析和处理,也用于地理信息成果的显示与表达。专家系统的引入将力求使数据采集、更新、分析和应用更加自动化和智能化。现代通讯技术,尤其是正在兴建的信息高速公路将为地理信息在各部门的传播和应用提供保证。因此,地理信息学的形成和发展是整个信息科学和技术发展的一个重要组成部分,将会给相关学科的发展带来机遇和挑战。 近年来,国外一些高校开始将原来的测绘专业改为地理信息学专业,如荷兰的ITC和香港理工学院称Geoinformatics,加拿大的拉瓦尔大学和卡尔加里大学称Geomatics,澳大利亚的新南威尔士大学称为Geomatic Engineering。这标志着地理信息学(Geomatics)作为一门科学、技术和产业已经形成。 对于地理信息系统和地理信息学在当代学科体系中的地位还没有统一的认识,一般将它看做是一门跨学科的边缘学科。 钱学森教授从八十年代出以来,一直提倡建立一门地理科学,它是自然科学与社会科学的汇合,是一门以理解和协调人地关系为最高目标的研究作为人地系统的地球表层的科学,它与自然科学、社会科学、数学科学、系统科学、思维科学、人体科学、美学、军事科学、行为科学并列的一大现代科学技术门类,它不是单一学科,而是一个学科体系。地理科学就是研究人口、资源、环境与发展的,不言而喻,地理科学将发挥主要作用。 杨开忠教授将地理科学分为四个层次:地理科学哲学、基础地理科学、应用地理科学和技术地理科学,我们略加修改,如图1所示。 图 1 地理科学体系图解 地理信息学同地图学、GPS、遥感、测绘、数量地理学同属于技术地理学。近年来人们所关注的GIS、RS与GPS的集成的理论基础也在于此,它们都是地理科学的技术支持学科,有着共同的研究对象,只有彼此结合起来,才能将研究推向深入,这是地理科学研究方法的一次质的飞跃。地理信息系统为地理科学研究提供了一个现代化工具,使地理科学的研究从传统的定性描述走向定量分析和空间分析,从简单系统走向复杂系统,具有了更好的技术手段。 三、GIS发展的不同阶段 GIS对社会发展所起的作用,与它所处的发展阶段紧密相关的。一项新技术的推广应用都要经过一个研究、推广、普及的过程,其中还需多次反复,才能成功,GIS也不例外。目前来说,它仍然出于发展阶段,特征在于它的基本理论及方法还出于不断探索完善之中,有关其数据模型、数据处理方法的论文也不断出现。但它的应用早已提上日程,有关管理、教育的研究已引起人们的关注。 关于我国GIS事业的发展历程,何建邦和蒋景瞳研究员对此做了回顾,他们认为国际地理信息系统的发展开始于本世纪60年代。中国地理信息系统研究与应用起步较晚,从80年代初开始,已有15年的历史。 中国科学院院士陈述彭教授在1978年杭州遥感学术讨论会上,把地理信息系统作为一个学科和技术领域分支提出,但当时并未引起重视和讨论。以它作为中国GIS事业准备工作开始。根据实际发展历程,他们建议把我国GIS发展划分为如下阶段: 1978—1980 为准备阶段,在我国正式提出地理信息系统领域; 1980—1985 为起步阶段,经过两年的准备和辩论,终于在1980年1月19日在中国科学院遥感应用研究所建立了全国第一个GIS研究室。GIS正式走上研究和实验的舞台,在中国开始了它的发展。 1986—1995 为发展阶段,从第七个五年计划(1986—1990)开始,GIS作为政府行为,正式列入国家科技攻关计划,开始了有计划、有组织、有目标的科学研究、应用实验和工程建设的工作。在这个发展阶段内又可划分为两个时期,即前五年(1986—1990)的初步发展时期和后五年(1991—1995,即第八个五年计划期间)的加快发展时期。GIS从研究、实验和局部应用走向实用化、集成化和工程化,在国民经济和社会保障上开始发挥重大作用,技术渐趋成熟。 1996年以后为走向产业化的阶段。目前,中国GIS已具备产业化的条件,已经造就了一批GIS专家和产业队伍,形成了多个GIS研究、培训和数字化基地。在本世纪最后五年,GIS在中国将会正式成为一种产业,进入市场,在国民经济和公众生活中得到广泛的应用。 我国GIS正处在向产业化转变的时期,叶嘉安教授对我国GIS产业化过程中所面临的重要转变进行了总结,主要有以下几点: 1、项目(资金)来源的转变 近年来,我国GIS系统开发资金逐渐由以科研经费(国家投资)为主转向商业投资为主转变,投资的回报需要直接来自所开发系统的运行过程中,这是GIS商品化的标志,这说明GIS的技术日趋成熟,GIS进入实际应用阶段。实际应用部门对GIS的需求日益高涨,成了项目和资金的主要来源。 2、开发者的转变 随着项目性质的变化,系统开发者由单纯的科研人员开始向工程技术人员转变。开发者头脑中的工程观念和市场观念、用户观念开始加强。 3、开发模式的转变 由国家投资、科研人员设计开发,以科研机构为主实施系统建设的“建设—移交”式的开发模式,转向开发部门与用户共同开发或用户自行开发,而由科研技术部门提供技术支持的开发模式。 4、技术重点的转变 系统功能开发由技术驱动转变为需求驱动,由注重软、硬件技术向注重管理技术和实用效益方面转变。 5、区域尺度的转变 受需求和资金来源引导,系统建设开始转向国家、区域、城市和工程项目等多种尺度,其中城市地理信息系统在近期蓬勃发展。 6、目标的转变 随着信息的社会化和产业化,GIS将由以面向管理决策部门的决策支持为主要目标,转向满足多层次、多领域的广泛的社会需求。 7、系统类型的转变 GIS由面向项目的系统向面向管理的系统发展成为必然的趋势。 陈子坦博士从应用的角度将GIS分为四个层次:项目水平、部门水平、企业化水平和社团水平。 项目GIS是GIS应用的初级阶段,用户的目标是完成一个特定的项目。用户主要关心的是获得这一项目的结论,其他与GIS相关的操作只是工具性的或中间过程。它们不能定期维护数据和应用程序的更新,在一个项目结束后,这个系统的周期也就结束了,大多数的科研机构、大学和科学家的GIS应用正处于这一阶段。 部门GIS的特点是具有一个维护良好的GIS数据库。这一数据库是定期更新的,并被很好的管理。从而可以用来完成一个部门、一个政府机构和合作双方中某一方的某些日常工作。这一部门中的用户随时利用最新的数据来分析和决策。目前已有数千的机构建立了部门GIS系统。 企业化GIS运行于多部门环境中,这些部门具有各自的职责和功能,他们之间共享共同的地理基础数据,分享硬件、软件系统资源,分享应用模型、专家经验和知识。他们还要分享维护和管理这一GIS系统的责任。网络通讯和分布式计算是支持企业化GIS的技术,所有数据和系统资源分布于一个网络上,在网络上流动,供多用户共享。企业化GIS可以帮助包括环境单位在内的企业更有效、更有目的性的完成决策制定过程。目前大约有数百个企业化层次上的GIS运行于政府和大公司中。 社会化GIS是GIS发展的未来层次。GIS不只是用于政府和科研机构,而且会被社会一般公众和团体所接触。人们可以通过Internet网络方便地获取所需的地理信息数据,象使用字处理软件那样方便地使用GIS软件。信息高速公路向社会化GIS提供技术支持。GIS系统将成为各种信息系统的一部分。GIS通过提供空间检索功能,在帮助人们操纵大量信息方面起着重要的作用。 从上述分析可以看出:我国目前所建立的GIS系统大部分属于项目GIS,只有少数的几个系统属于部门GIS,正逐渐向企业化GIS发展中。这就决定了GIS在我国社会发展中所起的作用并不是广泛的,GIS的建立和使用,基本上是政府行为,主要是为政府部门决策服务。 四、GIS在我国社会发展中的作用 我国GIS的应用水平,虽然与美国等发达国家相比存在较大的差距,但已经在国民经济各部门中发挥了重要作用。这里,我们仅就GIS在我国应用的几个主要领域作一简单介绍。 1、综合减灾 我国是在世界上自然灾害类型多,发生频繁,灾害损失最严重的少数国家之一,在以往的40年中,每年灾害经济损失约占国家财政收入的六分之一。近年来灾害直接经济损失每年约1000亿元,其增长速度明显超过全国经济增长,因灾人口伤亡也很严重。减轻自然灾害是我国社会经济持续发展的一项必不可少的工作。 减轻自然灾害是一项系统工程,它包括对自然灾害的监测、预报、评估、防灾、抗灾、救灾、恢复、教育、保险与综合管理,减灾的每一过程和环节都与空间的地理要素密切相关,如灾害发生的时空分布、强度与频度、灾害发生地社会经济易损性及抗灾能力、灾害评估、灾害应及救助措施及预案等,因而地理信息系统是减轻自然灾害的重要工具和手段,建立在具有庞大空间分析功能的地理信息系统上的减灾系统,才能在减灾中发挥快速、准确的决策作用。 GIS在减灾中的应用主要包括以下几个方面:1、灾害的监测和预报;2、自然灾害评估,包括灾前的历史灾害影响评价及灾情预测,实时的灾害应急评估和灾后的灾情评定;3、救灾和抗灾;4、灾害应急救助与救援;5、灾害保险与灾后恢复;6、灾害教育与宣传;7、灾害管理和灾害区划;地理信息系统在减灾中的应用会越来越广泛,尽管目前的应用还不完善,但随着综合减灾研究山进行,地理信息系统在该领域必将发挥出举足轻重的技术支持作用。 近年来,地理信息系统已经在减轻自然灾害的各个环节和领域得到或将得到应用。在我国的各单灾种灾害研究与管理部门,已建立了若干个用于单灾种研究的灾害信息管理系统,国家“八五”科技攻关项目中已开展了系列的自然灾害应急监测与评估研究及相应技术的研制,如水利部与科学院建立的实时洪水监测及水灾风险评估系统,中国科学院与国家气象局初步建立了实时台风、暴雨、洪涝灾害信息及减灾系统,中国科学院、国家教委所属有关科研、教学部门研制的应急气象卫星对小区域自然灾害进行应急评估的技术系统;国家地震局对一些城市进行震害预测的地理信息系统等。此外,GIS在人为事故的处理中也发挥了重要作用。 以重大自然灾害的监测与评价系统为例,该系统由7个子系统构成,以监测和评价洪水、干旱、林火、地震、雪灾、沙害和松毛虫害等7种灾害为目标,分别建成了相应的数据库、分析评价模型和试运行系统,从而构成了一个以GIS和RS技术为支撑的重大自然灾害监测评估的集成系统。该系统在监测评估近年来发生的重大自然灾害方面发挥了重大作用。 2、政府决策 GIS对社会发展的重要意义体现在其可以提高管理决策的科学性及合理性,无论是中央政府,还是地方政府,其管理水平的提高与GIS等信息技术的发展密切相关,特别是在现在信息社会中。 国情信息采集及管理、宏观经济、社会及环境规划、重大灾害防治等行政管理工作,在信息时代离不开GIS技术的支持,国务院综合国情地理信息系统的成功运行充分说明了这一点。它是一个融GIS与与办公自动化为一体的空间型信息系统,它以国家基础地理信息系统数据、政务数据和国民经济统计数据为基础,旨在为国务院领导机关研建一个以高新技术为支撑的宏观分析决策系统。该系统在国务院办公厅运行后,使得中央各部门的决策者门十分方便的查询所感兴趣的信息,方便了管理工作,一期工程的应用推动了省级GIS的建设。另一方面,GIS技术的发展还将成为未来国家级信息高速公路的一个重要组成部分,在信息高速公路的支持下,GIS对国家级的管理工作将具有更大的作用。 辽宁省国土资源信息系统是一个多要素多层次的空间型地理信息系统,是全国第一个省级地理信息系统,旨在为辽宁省政府机关提供一个用于对国土资源进行分析评价和规划应用的辅助工具。该系统在运行中,管理国土工作常用的数据,向有关部门提供信息服务,进行了沈阳市土地利用潜力评价和土地利用适宜性评价、辽宁省钢铁工业布局分析、本溪县水库淹没区分析等,为辽宁省的国土规划研究和编制提供了有力的科学依据。 中科院遥感所进行了“区域可持续发展决策支持系统的研究,建立了水资源、社会、经济决策支持模型和土地利用动态监测模型、土地人口承载力模型、人口预测评价模型、可持续发展动态规划模型等。以农业可持续发展为中心建立了遥感动态监测、分析评价、预测预警、管理规划与决策的完整体系,并进行了宏观规划、中观管理、微观工程决策三个层次的实验。随着研究的进一步深入和完善,类似的系统将在政府部门决策中发挥重要作用。 3、市政管理 城市历来是政治、经济、文化活动的中心,随着城市化进程的不断深入,城市在我国国民经济生活中发挥着越来越重要的作用,城市化所引起的一系列环境、生态、建设、管理等问题日益突出。城市是一个复杂的开放的空间系统,如果没有地理信息系统的支持,很难对城市进行有效的管理。 最近几年,城市地理信息系统在我国得到了蓬勃发展。深圳、北京、上海、厦门、海口、北海等大城市和沿海经济开放城市先后建立了城市地理信息系统。应用于城市资源、环境、交通、人口、土地管理、公共事业、基础设施、商业、旅游等领域,是发展最快的地理信息系统。 4、科学研究与教育 目前我国建立的地理信息系统,大部分是由科研单位和大学研究机构建立的,与科研和教育关系密切。通过这些系统的建立,使我们对GIS的认识逐渐深入,技术日趋成熟,培养了大批的不同层次的GIS研究开发人员,普及了GIS的知识,为我国GIS事业的产业化奠定了良好的基础。同时建立的一些GIS系统对后续系统的完善提供了技术规范,并为后续系统和其它科学研究提供了基础地理数据。特别是国家测绘局建立的国家基础地理信息系统,发挥了重要的示范作用。 5、其它 地理信息系统在其他领域的应用也不断深入,如农作物估产、军事指挥、投资环境评价等。如重点产粮区主要农作物估产系统,该系统以估算松辽平原、黄淮海平原、江汉平原和太湖流域的玉米、小麦和稻米的产量为目标,综合利用GIS和RS技术与野外调查相结合,提出了上述农作物播种面积的估算方法,建立了各自的单产模型,经过多次完善和多级集成,建成的重点产粮区农作物估产的信息系统。 地理信息系统在我国经过15年的发展已经在国民经济各部门中发挥着越来越重要的作用,从它的应用领域来看,几乎是无所不包的。

基于GIS的大型工程分布式光纤传感监测系统研究

基金项目:国家杰出青年基金项目(40225006),国家教育部重点项目(010886),南京大学985工程项目。

索文斌 王宝军 施斌 刘杰

(南京大学地球科学系地球环境计算工程研究所,南京,210093)

【摘要】BOTDR是一种新型的分布式光纤传感监测技术,其分布式、高精度、长距离、实时性、远程控制等特点,已逐渐受到工程界的广泛关注。由于监测是分布式的,所以得到的数据与地理位置具有重要的相关性。结合工程实践中遇到的具体问题,研发了一套基于GIS的大型工程分布式光纤传感监测系统。本文重点论述系统的设计要求,包括设计目标、技术框架和特色功能。结合某隧道 BOTDR监测工程开发的一套相应的监测数据管理系统,实现了工程监测数据的采集与管理、监测结果的可视化、监测信息的对比查询等功能,是一套集智能化分析与决策化管理为一体的多功能管理系统。

【关键词】BOTDR GIS 分布式光纤传感器 监测系统

1 引言

光纤传感技术以其良好的耐久性、抗腐蚀、抗电磁干扰,适合于在恶劣环境中长期工作等优点受到越来越多的工程建设者和科研人员的重视[~3]。BOTDR(Brillouin Optic Time-Domain Reflectometer)布理渊光时域反射计,作为新型的分布式传感技术,逐渐得到工程界的认可。日本、加拿大、瑞士等国已成功地将该技术应用到水坝、桩基、边坡、堤岸等工程的监测中[~3]。我国自2001年由南京大学地球环境计算工程研究所率先从日本引进该技术以来,开展了大量的室内外实验研究,并成功地完成了多个工程项目,取得了一系列重要的研究成果[4-7]。

在具体应用中,BOTDR所提供的监测结果存在诸如直观表现差、数据配准和空间定位困难、综合管理功能弱等方面的缺陷,未经过系统培训的工程技术人员,很难读懂 BOTDR的监测结果,后期成果处理也非常繁琐。本文针对大型工程分布式光纤传感监测领域存在的数据分析与管理中存在的不足,提出了一套比较切合工程实际的解决方案,并结合具体工程实例设计和开发了一套应用系统。实践表明,该系统可以很好地实现对监测数据的采集与管理、监测结果的可视化显示以及监测信息的对比查询等功能。

2 问题的提出

2.1 BOTDR的监测原理[1]

激光在光纤中传播时,光波与光声子相互作用即会产生布理渊散射光。当环境温度的变化量不大(T≤5°)时,布理渊光频率漂移量(vB)与光纤所受的应变量(ε)成正比,其关系式如下式所示:式中:υB(ε)表示光纤受到ε应变时的布理渊频率漂移量;υB(0)表示光纤不受应变时的布理渊频率漂移量;

为比例系数,约为0.5GHz;ε为光纤的实际应变量。

地质灾害调查与监测技术方法论文集

为了得到沿光纤分布的应变信息,只需测量沿光纤分布的布理渊频率漂移量的变化情况,沿光纤距离光源为Z长度的点可由下式求得:

地质灾害调查与监测技术方法论文集

式中:c为光速,n为光纤折射率,T为自激光发射与接收到布理渊散射光所经历的时间。

监测原理如图1所示。

图1 BOTDR的应变监测原理图

2.2 BOTDR在结果表现上存在的问题

在实际工程应用中,根据工程实际情况的不同,可按照不同的黏着方式将传感光纤粘贴在所需监测结构(或材料)的表面,从而获得被粘贴结构(或材料的)沿光纤的径向应变分布信息。但 BOTDR所提供的监测结果存在以下几个方面的缺陷:

(1)海量数据的综合管理缺陷。BOTDR提供的监测数据是沿光纤径向的每一点的应变信息(点之间的间距和仪器的距离分解度相关),而这些点的应变信息是以数据点的形式给出的,造成原始数据繁多复杂。

(2)实际里程与监测结果的数据配准问题。分布式光纤传感器在实际铺设过程中,出于定位需要,经常预留一些冗余光纤,为了将所测得的应变量和实际的光纤里程对应起来,必须获得发生应变部位距离光纤光源的实际里程,而 BOTRD提供的监测里程是光纤的实际长度(包括冗余部分),并不是工程实际里程,也就是说监测结果与实际里程之间存在数据配准问题。

(3)监测结果的直观表现不佳。BOTDR原始监测系统并不提供阈值设定功能,即对于特定的工程而言,我们必须人为地设定阈值寻找应变异常信息。

(4)实测数据影响因子多。BDTOR监测结果是在诸如温度影响在内的多种因子的影响下测得的数据,未经处理的实测数据可信度差。

(5)缺乏面向最终用户的监测数据。BOTDR监测结果是未经配准和处理的纯文本文件,这些数据并不是面向最终用户,而是面向具有 BOTDR操作经验的科研人士,也就是说未经专业培训的工程技术人员很难读懂 BOTDR的原始成果。

3 基于GIS的大型工程分布式光纤传感监测系统设计

3.1 系统设计目标

针对上述所存在的问题,基于GIS的大型工程分布式光纤传感监测系统应该遵循以下的总体设计目标:

(1)完成对所监测工程的日常健康诊断,分析工程安全性。以应变分析为核心,建立工程安全评价体系,完成对影响规划、管理、决策及科学研究的数据进行储存更新、查询检索、智能评价、统计分析、类比判别和制图制表等任务,提高工程管理质量和效率。

(2)利用BOTDR提供的数据,经系统处理后再配合工程实地调查数据,完成以工程质量为目标的各项监测工作。应用横向纵向两方面类比模式监测工程安全性,即利用不同光纤反馈回来的数据,以及同一根光纤不同时间测试的数据进行类比分析,得出工程可信的结果。

3.2 系统技术框架

结合目前GIS的发展趋势,并考虑工程实际的可操作性,系统应用ESRI公司提供的MapOb-jects组件,在Visual Basic 6.0环境下开发了以组件式GIS为核心的管理系统,系统的技术框架如图2所示:

图2 系统技术框架图

从图2的技术框架图中可以直观地看出,系统设计以各种不同用户的需求作为指导,并在开发中通过信息反馈不断更新和完善系统功能及工作模式。系统以基础地理及属性数据库为基础利用GIS的开发实现空间数据的提取,结合光纤监测数据库实现监测数据的配准以及可视化表示,以不断更新和完善的管理与决策数据库实现科学决策,构建集基础功能、智能分析、决策管理于一体的多功能系统。

3.3 系统的功能与特色

基于GIS的大型工程分布式光纤传感监测系统基本实现了如图3所示功能。

从图3可以看出,该系统基本上可以解决工程监测数据的采集与管理、监测结果的可视化显示、监测结果的智能化分析,是一个以工程应用为目标,以监测结果为核心的多功能管理与智能化分析系统。

(1)图层控制:系统加载多个图层(ESRI的Shape文件、AutoCAD的DXF文件或图像文件JPG、BMP、GIF、TIF等)。在使用中用户可以通过图层控制图层是否可见、图元颜色、可视化范围、图层顺序等,以便于对特定图层进行浏览。

图3 系统的功能与特色

(2)视图控制:系统提供图像的放大、缩小,全局显示、局部显示,漫游等基本功能。

(3)动态标注:系统实现了空间任意位置的动态跟踪标注。用户点击鼠标后可随时获得鼠标所在位置的属性信息。

(4)数据维护:用户可以选择两种不同方式查询、检索、更改数据,提供完善的从图到属性和从属性到图的数据查询、检索、更改方式。

(5)绘图功能:系统提供自助的绘图方式,用户可按照自己的想法和要求新建图层或者在原图上自行绘制图形,并根据程序提供的属性表为数据添加属性。

(6)元素选取:系统能够识别图中选取的元素,通过线、矩形、区域、多边形、圆来拾取物体,并显示拾取元素的属性数据。当选中特定位置的光纤时,光纤以闪烁3次来回应用户选中的光纤。

除上述功能之外,鉴于分布式光纤监测的工程特点,本系统还具备以下几个特色功能:

(1)数据分析:系统以绘制专题应变曲线图的方式提供数据分析功能。通过 BOTDR实测数据,绘制光纤应变曲线专题图,根据不同的阈值设置不同颜色的应变曲线图。

(2)数据配准:在实测数据与工程实际里程之间,根据实际工程光纤铺设的特征数据信息(光纤定位信息),系统提供一个精确的配准模块,误差小,应用性强。

(3)图例显示:系统提供独特的图例,便于工程管理。如,实际工程若铺设5根光纤,并且光纤铺设在不同墙面,采取二维示意图显示,可以绘制不同的图例显示,用以区别不同墙面铺设的不同光纤。

(4)对比查询:系统提供了由系统操作主界面至应变曲线绘制界面的对比查询方式,用户可选则从图到曲线或从曲线到图的两种方式进行结果查询,这样,工程监测的质量和效率就大大提高了。

4 工程应用实例

4.1 工程概况

某隧道工程是一湖底隧道,全长约2.56km,其中湖底隧道长约1.66km,为双向六车道,三箱室结构形式,其中左右两个箱式为车行道,中间箱室为净宽3m的管廊与检修通道。隧道设计宽约32m,净空高度4.5m,设计车速为60km/h。

2002年7月,隧道项目指挥部经反复调研和论证后,决定采用BOTDR技术进行隧道整体变形监测。2002年11月~12月,项目组完成了传感光纤铺设,铺设情况如图4所示,并分阶段对隧道变形进行监测。2003年1月~4月,为施工监测阶段,2003年5月通车后至9月为常规监测阶段。施工监测阶段主要进行由于后期施工对隧道变形的影响以及隧道箱体接缝变形监测,监测频率为2天/次。常规监测阶段主要进行通车条件下隧道稳定性监测,监测频率3~5次/周。

图4 某隧道光纤总体平面布置图

4.2 隧道工程监测数据管理的系统实现

4.2.1 数据准备

系统的基本数据包括施工区域图、隧道信息、光纤铺设信息、光纤监测数据等四大类。这四类数据既包含了空间信息数据又包含了属性数据,是构成系统数据结构的基础,又是系统数据分析和管理的前提。

(1)施工区域图。主要提供隧道基本信息与周边环境状况,用以确定施工地理信息、施工线路等,为绘制隧道二维示意图提供标准。

(2)隧道信息。主要提供隧道纵剖面、横剖面信息。横剖面信息用于了解光纤铺设里程和方位,纵剖面信息主要用于掌握具体施工操作面,为准确绘制隧道二维示意图做数据基础。

(3)光纤铺设信息。主要提供传感光纤铺设信息。拟铺设的5条传感光纤处在隧道南洞、北洞不同的墙面上,每条光纤的实际铺设长度与工程里程必有误差,通过在铺设过程中了解光纤定位信息,为数据配准模块提供数据基础。

(4)光纤监测数据。主要指 BOTDR实测应变数据,这些实测数据通过数据配准、阈值设定等系统转换处理后,将得到精确的隧道不同位置的应变信息。

4.2.2 系统工作流程

数据管理与分析是该系统的核心组成部分,是得到精确工程监测信息的重要组成部分。数据管理与分析主要靠以下流程来实现:

步骤一:数据准备

将BOTDR实测数据以*.txt文件存放到指定位置,以备数据处理调用。

步骤二:选择光纤

在5根铺设的光纤中,在主操作界面中点击所需监测光纤,即完成所需光纤的选择,点击所选光纤时,与之相对应的系列在后台被调入。

步骤三:选择系列

所谓系列,就是不同时间监测的不同光纤的应变信息和数据配准信息。选择系列操作包括调入监测数据,选择数据配准,设置隧道变形阈值等。

步骤四:应变分析

进行系列选择之后,选择绘制曲线,系统即在新窗口绘制出经数据配准的隧道整体应变分析图。

除上述主要数据管理与分析功能之外,系统还设置了分段管理与分析的功能,即通过对所需监测段进行设置起点、设置终点操作,进行局部数据的管理与分析。另外,系统还提供了由图到曲线(或曲线到图)的对比查询方式,选择图到曲线(或曲线到图)的菜单项之后,图和曲线完美地对应起来,并提供了阈值设定功能,做到自动预警,避免人为干扰。图5至图7显示了系统数据与管理功能的操作界面,其中,图5为数据分析界面,图6为选择系列界面,图7为隧道应变分析曲线界面。

图5 数据分析界面图

图6 选择系列界面

图7 隧道应变分析曲线界面

5 结语

综上所述,应用GIS管理分布式光纤监测工程可实现海量数据的高效管理。GIS以其独特的数据管理、查询、检索、分析模式成为工程管理的首选。它的海量数据分层管理、数据结果的可视化表现、实现双向查询、面向最终用户的特点更显示其理想的工程管理能力。具体的说,系统具有以下优点:

(1)系统改善了BOTDR原系统中海量数据的综合管理模式,结果显示更加清晰直观。

(2)系统设置了数据配准、阈值管理等模块,监测结果可直接应用,避免了人为判别的误差,提高了工作效率。

(3)系统采用可视化显示,面向最终用户,无须对具体工程监测人员进行系统培训。

(4)系统实现了工程监测数据的采集与管理、监测结果的可视化显示、监测信息的对比查询等功能,是一个集智能化分析与决策化管理为一体的多功能管理系统。

本系统以具体工程为实例,具有更加科学、高效、直观、方便等优点,并减少了BOTDR监测结果的后期人为干扰,使得测试结果更加客观、准确,有利于科学管理和提高效率。

参考文献

[1]Hiroshige Ohno,Hiroshi Naruse,et al.Industrial Applications of the BOTDR Optical Fiber Strain sensor[J].Optical Fiber Technology 7,2001:45~64

[2]Inaudi D, Casanova N.Geo-structural monitoring with long-gage interferometric Sensors[A].Proceedings Of The Society Of Photo-Optical Instrumentation Engineers(SPIE),3995[C].Bellingham,WA:Spie-Int Society Optical Engineering,2000:164~174

[3]Ohno H, Naruse H,Kurashima T,et al.Application of Brillouin Scattering-Based Distributed Optical Fiber Strain Sensor to Actual Concrete Piles[J].IEICE Trans.Electron,2002,E85-C(4):945~951

[4]Shi B,Xu H Z,Zhang D,et al.A study on BOTDR application in monitoring deformation of a tunnel[A].Proc 1 st inter conf of structuraI health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:1025~1030

[5]Ding Y,Shi B,Cui H L,et al.The stability of optic fiber as strain sensor under invariable stress[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:267~270

[6]Zhang D,Shi B,Xu H Z,et al.Application of BOTDR into structural bending monitoring[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276

[7]Xu H Z,Shi B,Zhang D,et al.Data processing in the distributed strain measurement of BOTDR based on wavelet analysis[A].Proc 1 st inter conf of structural health monitoring and intelligent infrastructure[C].Netherlands:A.A.Balkema,2003:271~276

[8]Building Applicatins with MapObjects[M]USA.Enviromental System Research,Institute,Inc.1999


网站名称:GIS工程技术设计报告 gis课程设计
文章源于:http://cdxtjz.cn/article/dohodcj.html

其他资讯