189 8069 5689

gis技术地质勘查 arcgis在地质方面主要用途

GIS在地质学中的应用

石油和矿产勘查要求多种数据集进行综合分析。过去对数据存档、检索及迭加分析通常使用图件或表格数据,对比与综合要花费大量时间,遥感与GIS技术则为这些多源勘探数据综合处理提供了现代化手段。

创新互联从2013年创立,先为平乡等服务建站,平乡等地企业,进行企业商务咨询服务。为平乡企业网站制作PC+手机+微官网三网同步一站式服务解决您的所有建站问题。

在石油等矿产勘查时,地质学家首先要对各种地质图件、地球物理和地球化学数据、地震剖面以及遥感图像等数据进行综合分析,以便能清楚地了解各种不同数据集之间的关系。

地质数据通常也是由点、线、多边形三种形态构成的。点数据以地球化学分析数据最典型,它与某一特定的取样点有关;线数据可以是一条岩性分界线或一条断裂;多边形数据如某种岩类的出露范围。这些数据,有的采用图件形式,用颜色表示岩石类型(专题图),符号表示地球化学取样点位置,用等值线表示磁场测量值。许多地质数据还以报告、图形或实验室结果表格等形式提供。在GIS中,这些不同的数据集(如地球化学分析数据、航磁调查数据、地震数据、地质图和地形图以及遥感数据)经过数字化、编码、矢量到网格数据转换,产生连续或离散的数据集,存入建立起目标区的地质数据库,图13-1给出了地质地表数据的输入,分析和建库的过程。

在地质数据库中,地质数据按专题内容分层存贮,几何特征以图形图像表达,属性数据则记录在二维关系表中,两者为一对一或一对多的关系。于是,在这个数据模型的基础上,勘探工作区的所有地球物理、地球化学、岩石学及辐射场的数据都可以纳入数据库。一旦工作区的地质数据库被建立,地质学家便可以利用已有的专家(概念)模型来指导数据分析。例如,在石油勘探中,首先利用石油存贮条件与变量之间已知的物理、化学和地质联系来分析数据库提供的数据,对直接或间接与这些联系有关的数据进行分析、处理、生成各种派生数据。表13-1显示某工作区地质数据库中的原始数据和派生数据集。用这些数据所提供的信息来选定油气储藏有利地区。

如将重力和航磁数据叠合,有助于对基底形态的分析。又由于基底形态对沉积盖层构造发育有影响,因而据重力和航磁的一阶、二阶导数可推断出构造的总体特征。又如,基底隆起地区可能影响盖层构造特征,基底凹陷的地区沉积厚度较大,可能成为盆地的沉积中心。

图13-1 地质地表数据处理、分析及建库流程图

背斜构造是重要储油构造。是油气勘探数据库的重要内容。构造的向下延伸范围是一个最有价值的参数,目前的技术水平还难以确定。在数据库中,背斜用多边形表示,并以背斜轴为中心向下延展来定性表达背斜的地下影响范围。

断层对油气的生、储、盖都很重要。断层等密度图与线性体等密度图是用任一网格单元范围内断层/线性体出现的频数来定义的。用邻域分析法计的研究区内围绕每一象元的5×5象元阵列中断层出现的次数。结果图显示出断层/线性体密度。将断层等密度和线性体等密度图进行叠加,合成出一幅描述断裂密度的新图。对盖层断裂密度高值地区进行分析,判明它对区域油气运移和储集的具体作用。

表13-2给出某研究区域模型及其对应的权重,系统据此运行后生成一个新图像。图像的像元值等于各输入的权值求和,将它们进一步分段,便可以表达工作区中油气产出有利性的不同级别,最后圈出高概率产油区。

这种技术方法同样适用于其它矿产勘查、区域成矿预测,工程地质灾害评估与预测等。

GIS技术的引入可能极大改变地质学家的工作模式,使地学工作者面临的对多源地质数据的采集、配准、存储、分析、综合与检索工作,变得形象直观、灵活多样、快速准确,使各种地学模型的生成和发展,在技术上有了主要的支撑系统。

表13-1 原始和派生地质数据

表13-2 模型的输入与数字加权

基于GIS的国家出资地质勘查核查系统的设计与实现

陈小红1 潘懋1 徐旸2 汪艳梅3

(1.北京大学地球与空间科学学院;2.北京市地质调查研究院;3.内蒙古自治区国土资源信息院)

摘要 进行矿权范围内涉及国家出资地质勘查情况核查是矿政管理的一项重要工作。本文基于GIS技术,采用矿政空间数据与地质资料的结合,实现了矿权范围内涉及国家出资地质勘查情况筛查、重叠区域的核实等功能。该系统在内蒙古自治区国土资源厅实际工作中得到了应用,极大地提高了核查工作效率。

关键词 国家出资地质勘查 GIS 空间分析 影像配准

0 引言

国家出资地质勘查,是指地质勘查资金由国家投入、地质勘查风险由出资者(国家)所承担的地质勘查。国家投入的地质勘查资金来源一般包括税收、矿产资源补偿款、矿业权使用费及价款、地质勘查基金(中央或者地方)[1~2]。国家出资地质勘查形成的成果以不同形成体现在矿业权中,因此在矿业权登记、转让等环节中,需要考虑国家出资地质勘查情况。

矿政管理一般要承担矿业权的登记、变更、注销等工作以及矿产储量登记工作等。GIS技术已经广泛应用于矿政管理系统中,矿权管理系统、储量空间数据库管理系统、矿业权审批系统等[3~7]主要实现数据填报、矿权登记业务流程管理、网上审批、基于GIS功能的图形查询、统计、发布等功能;GIS应用于“一张图管矿”是业内研究的热点,主要将矿业权实地核查数据与矿产资源规划等多个数据库进行集成,实现矿权审批、监管、统计分析等[8~11]。

本文基于GIS技术,结合地质档案资料,集成探矿权、采矿权、储量等空间信息,实现了矿权范围内涉及国家出资地质勘查情况筛查、重叠区域的核实等功能,为矿业权登记、转让等环节中价款核算提供支持。该系统在内蒙古自治区国土资源厅工作中得到应用,解决了传统核查中核查精度低、周期长的问题,提高了矿政管理效率。

1 系统框架及功能

1.1 设计思路

矿业权(探矿权、采矿权、划定矿区范围批复等)审批、价款评估与缴费是矿政管理的一项重要工作,而进行矿业权范围内国家出资地质勘查情况核查工作是矿政管理及价款评估与收缴的重要依据之一。基于GIS的国家出资地质勘查核查系统建设应满足矿政管理的多层次需求,实现涉及矿政管理的基础数据管理、查询、图形核查、报告管理、统计分析等需求。系统建设应遵循总体设计、分步实施、技术先进、安全可靠的基本思路。

总体设计,分步实施:系统设计按照矿政管理需求,全面统筹规划,做好顶层设计,进而分步骤实施。优先考虑系统架构的合理设计,在此基础上逐步进行各功能组件及系统接口的深化设计,使组件之间实现高内聚、低耦合,力求形成一个布局合理、功能完备、能力均衡、分工明确的平台。

技术先进,安全可靠:系统建设充分借鉴信息技术发展前沿技术,综合运用数据库、地理信息系统(GIS)、分布式计算等多项信息技术,并遵循稳定性(运行稳定)、可扩展性(功能、数据、可视化、用户界面等)、可配置性(参数可配置)、标准性和规范性等设计原则。

1.2 系统框架

基于GIS的国家出资地质勘查核查系统框架包括数据库、技术支撑、应用系统、用户等,如图1所示。利用地质资料目录数据库、地质资料图文数据库、探矿权登记数据库、矿业权登记数据库及储量空间数据库,提取相关的数据项,构建数据库;采用空间数据库引擎进行数据访问;基于GIS平台二次开发,实现空间检索和图形核查等功能;基础组件实现显示、可视化、报表、报告模板、输出等等功能。

图1 基于GIS的国家出资地质勘查核查系统框架

1.3 主要功能

基础数据管理:主要包括地理底图、地质资料目录数据、探矿权登记数据、矿业权登记数据、储量空间数据管理。除了具有数据导入、录入、修改、删除等功能外,还包括利用区域坐标(拐点坐标)生成图层功能,生成的图层为地质资料目录GIS图层、探矿权GIS图层、矿业权GIS图层、储量GIS图层;另外,区域坐标(拐点坐标)发生变化后,GIS图层将实现更新。

条件查询:包括地质资料目录数据、探矿权登记数据、矿业权登记数据、储量空间数据查询。

空间检索:除了具有点选检索、拉框检索、输入地理坐标检索功能外,还有两个图层交互检索功能。

图形核查:功能包括两个方面:一是在地理底图基础上加载探矿权图层、矿业权图层、储量信息图层及地质资料目录图层,实现待核查矿权范围内地质资料检索,检索结果显示、追加、删除及资料查看等功能;二是实现待核查矿权与涉及国家出资地质勘查重叠区域比对功能,包括导入数据、配准、距离量算、面积量算、数据导出等功能。

核查报告管理:核查信息保存到数据库后,系统具有提取核查信息并自动生成报告功能,并且还具有报告上传入库、查询、显示等功能。

统计分析:按照矿权性质(招拍挂、探矿权、采矿权、划定矿区范围)统计,按矿权类别(探转采、延续、变更、转让、新立)统计,按行政区划查询(矿权所在的省、市、区行政区划)统计。

2 系统主要关键技术及实现

系统采用Oracle10 g数据库,把地质资料目录数据库、探矿权登记数据库、矿业权登记数据库及储量空间数据库提取的数据项按照空间-属性进行关联;系统采用C# WinForm,基于GIS平台二次开发;实现系统的关键技术主要为矿权涉及国家出资地质勘查项目筛查、矿权涉及国家出资地质勘查重叠区域核实、核查信息提取并生成核查报告等方面。

2.1 空间数据与属性数据组织

地质资料是一种国家投入巨额勘查资金获得的特有信息资源[3],是将地质勘查形成的原始地质资料、实物地质资料等进行总结、编制而形成,地质资料需按照地质汇交管理办法进行汇交[12]。汇交的地质资料包含目录和电子文件。利用地质资料目录数据库、地质资料图文数据库、探矿权登记数据库、矿业权登记数据库及储量空间数据库,提取相关的数据项,再增加与核查特性相关的数据项,组成核查系统的数据内容。

提取地质资料目录数据库中档号、报告名称、起始经度、终止经度、起始纬度、终止纬度等数据项,并增加是否涉及国家出资数据项;提取地质资料图文数据库的档案号及电子文件;提取探矿权登记数据库中矿权证号、项目名称、矿权性质、申请人、勘查单位、地理位置、东经起、东经止、北纬起、北纬止、区域坐标(拐点坐标)等数据项,并利用坐标信息组织空间数据图层;提取矿业权登记数据库中矿权证号、矿山名称、矿权性质、申请人、勘查单位、地理位置、东经起、东经止、北纬起、北纬止、区域坐标(拐点坐标)等数据项,并利用坐标信息组织空间数据图层;提取储量空间数据库中矿区名称、报告名称、行政区域、主矿种、矿区面积、地理位置、东经起、东经止、北纬起、北纬止、区域坐标(拐点坐标)等数据项,并利用坐标信息组织空间数据图层。

另外,设计了保存核查结果的数据项,主要为:文号、项目名称、项目性质、矿权证号、矿权人、面积、行政区域、东经起、东经止、北纬起、北纬止、区域坐标(拐点坐标)、报告出具时间、是否国家出资等。

2.2 矿权涉及国家出资地质勘查项目筛查

在地理底图上,加载探矿权图层、采矿权图层、储量信息图层、地质资料目录图层,利用GIS的空间分析功能[13,14],实现矿权范围内涉及国家出资地质勘查项目,具体步骤为:

1)建立图形工作区,图形工作区为西安80 地理坐标,并加载探矿权图层、采矿权图层、储量信息图层、地质资料目录图层,其中,探矿权图层、采矿权图层、储量信息图层一般为高斯三度带或者高斯六度带投影,需进行坐标转换。

2)地质资料目录图层中属性“是否涉及国家出资”数据项进行标识,分别标为“涉及国家出资”和“不涉及国家出资”。

3)在探矿权图层、采矿权图层或储量信息图层中,选定待核查矿权,利用GIS空间分析功能,得出该矿权范围所有的地质勘查项目,如图2所示。

4)利用“是否涉及国家出资”数据项进一步筛查,即可得出矿权范围内涉及国家出资地质勘查项目。

5)筛查得出的涉及国家出资地质勘查项目,如有其他资料进行佐证,可以追加或者剔除。

图2 待核查矿权涉及地质勘查项目示意图

2.3 矿权与国家出资地质勘查重叠区域核实

筛查得出的涉及国家出资地质勘查项目,与图文数据库链接,提取国家出资地质勘查项目数据,并利用GIS的矢量数据与影像数据配准功能[15~17],实现矿权与国家出资地质勘查重叠区域核实。具体步骤为:

1)建立图形工作区,图形工作采用高斯三度带或者高斯六度带投影,并加载待核查矿权图形。

2)获取国家出资地质勘查工作区域影像数据,并以待核查矿权图形为参考进行配准,如图3所示。

3)配准后,在图形工作区域利用距离或者面积量算工具,确定待核查矿权与涉及国家出资地质勘查工作区比例。

图3 待核查矿权图形与涉及国家出资工作区域影像配准

2.4 核查信息提取,自动形成核查报告

核查中形成矿权人、矿权、位置(坐标)、面积、矿权范围涉及地质勘查情况等信息,提取后存入数据库中。利用Word模板,系统实现核查报告自动生成,该报告为矿权价款核算提供重要依据。

3 系统应用

该系统在开发完成后,依托内蒙古自治区矿政管理基础数据库及管理系统建设项目,在内蒙古自治区国土资源厅实际工作中得到应用,极大地提高了核查工作效率。图4为该系统主界面。

图4 基于GIS的矿权涉及国家出资地质勘查核查系统工作界面

以前核查一宗矿权涉及国家出资地质勘查需要调阅20 档左右的纸质资料,并需要采用手工的方式,将坐标转换后投影到矿权纸图上扣合后得出结论,这种方式费时、费力,效率低下。而该系统实现了核查流程自动化,利用GIS的空间分析功能,快速得出涉及国家出资地质勘查情况,而且可以直接调阅地质资料,并在计算机屏幕上进行核查,减少了大量反复调阅纸质地质资料的时间,核查效率提高30%以上。

4 结论

本文基于GIS技术,结合矿政信息管理实际需求,实现了矿权范围内涉及国家出资地质勘查核查功能。该系统在内蒙古自治区国土资源厅应用中取得了很好的效果,利用该系统,累计完成了超过近千宗的矿权核查,提高了矿政管理能力,取得了良好的社会和经济效益。

参考文献

[1]孙习稳,干飞.国家出资地质勘查形成矿业权的经济关系研究[J].中国矿业,2007,16(5):13~15.

[2]徐婧,李慧洁,薛建明.国家出资地质勘查形成的矿业权产权归属与收益分配[J].科学论坛,2012(5):159~160.

[3]赵善人,周桅,等.矿业权管理信息系统建设[J].国土资源信息化,2003(2):3~6.

[4]周桅,赵善仁,等.矿业权管理信息系统技术方案及其实现[J].国土资源信息化,2003(2):7~10.

[5]吴仲煜,查宗祥,等.矿业权管理信息系统中图形子系统的设计及特点[J].国土资源信息化,2003(2):11~13.

[6]孙立双,马晓明,等.矿业权登记管理系统图形辅助审查系统功能设计[J].国土资源信息化,2013,34(11):95~102.

[7]胡延晟.矿业权项目审批管理信息系统的设计与实现[D].长春:吉林大学,2011.

[8]刘金星,李新通,等.基于网络 GIS的福建矿业权图形辅助审查系统设计与建设[J].山西师范大学学报(自然科学版),2011,25(1):116~120.

[9]杨文森,陆世东,等.“一张图管矿”的数据组织与分类[J].地理空间信息,2012,10(1):64~66.

[10]杨文森,胡凯,等.湖北省“一张图管矿”试点的研究与应用[J].国土资源情报,2010,(10):70~72.

[11]谭永杰,郭佳,等.基于全国矿业权实地核查成果数据的矿政管理信息系统建设[J].中国矿业,2011,20(7):50~54.

[12]於顺然.浅谈新的地质资料汇交内容及其制度[J].江苏地质,2002,26(3):180~184.

[13]张桂兰,杨文海.浅谈《内藏古矿产资源储量空间数据库系统》建设与应用.西北资源[J]2005.(2):40~42.

[14]吴立新,史文中编著.地理信息系统原理与算法[M].北京:科学出版社,2003.

[15]郭仁忠著.空间分析[M].武汉:武汉测绘科技大学出版社,1997.

[16]宋智礼.图像配准技术及其应用的研究[D].上海:复旦大学,2010.

[17]魏晓敏.图像配准算法研究与系统设计实现[D].南京:南京航空航天大学,2010.

地质信息系统技术

一、内容概述

地质信息系统(GIS),产生于20 世纪60 年代。它随着人们对自然资源和环境的规划管理工作的需要以及计算机制图技术的应用而诞生,是一种对大批量空间数据采集、存储、管理、检索、处理和综合分析并以多种形式输出结果的计算机系统。1965 年,W.L.Garrison首先提出了“地质信息系统”这一术语,开创了这一新技术的发展史。此后,美国、加拿大、英国、澳大利亚等国均投入了大量人力、物力和财力,并逐步确立了他们在这一领域里的国际领先地位(黄润秋,2001)。

二、应用范围及应用实例

1.GIS技术在地质灾害信息系统中的应用

随着人口的急剧增长,经济的迅速发展和自然资源的大量消耗,不仅生态环境恶化,而且导致自然灾害(包括地质灾害)频繁发生。美国、印度等国是世界上地质灾害较为严重的国家,地质灾害具有类型多、分布广和成灾强度高的特点。这些地质灾害大部分发生在承灾能力较低的地区,给当地的经济和社会稳定构成了严重的威胁。地质灾害是地质环境质量低劣的表现,它的频发不仅反映了自然地质环境的脆弱性,而且反映了人类工程经济活动与地质环境间矛盾的激化。要使人类工程经济活动与地质环境之间保持较为协调的关系,就必须对地质环境进行评价,以了解不同经济发展过程中区域地质环境的基本态势和变化趋势,为环境管理和城市规划等提供依据,但传统技术手段已不能完全应付迅速反应的地质灾害。地质信息系统作为当前高科技发展的产物,集图形、图像与属性数据管理、处理、分析、输入输出等功能为一体,应是当前地质环境评价与地质灾害预测的强有力工具(赵金平等,2004)。

GIS 技术的产生是计算机技术和信息化发展的共同产物。是管理和研究空间数据的技术系统。可以迅速地获取满足应用需要的信息,能以地图、图形或数据的形式表示处理的结果(曹修定等,2007)。国外尤其是发达国家在GIS应用与地质灾害研究方面已做了很多工作。从20世纪60年代至今,GIS技术的应用也从数据管理、多源数据集数字化输入和绘图输出,到DEM或DTM模型的使用,到GIS结合灾害评价模型的扩展分析,到GIS与决策支持系统(DSS)的集成,到网络GIS,逐步发展深入应用(黄润秋,2001)。

印度Roorkee大学地球科学系的R.P.Gupta和B.C.Joshi(1990)用GIS方法对喜马拉雅山麓的Ramganga Catchment地区进行滑坡灾害危险性分带。该项研究基于多源数据集,如航空像片、MSS磁带数据、MSS图像、假彩色合成图像及各种野外数据,包括地质、构造、地形、土地利用及滑坡分布。以上数据需要进行数字、图像等处理,然后解译绘制出专题平面图,包括地质图(岩性与构造)、滑坡分布图、土地利用图等。这些图件经数字化及有关数据都存储在GIS系统中,找出与滑坡灾害评价相关的因素,如滑坡活动与岩性的关系,滑坡活动与土地利用的关系,不同斜坡类型的滑坡分布情况,滑坡分布与主要断裂带的距离关系。经过统计及经验分析,引入一个滑坡危险系数(LNRF)。LNRF值越大,表示该地滑坡灾害发生的危险性越高。并且对LNRF的3个危险级别分别赋予0、1、2三个权重。考虑到滑坡的发生是多个因素综合作用的结果,故调用GIS的叠加分类模型,将各因素的权重叠加,得到综合图件,图上反映的是每个地区的权重总和。根据给定标准,即可在这张图上勾绘出滑坡灾害危险性分区图。

荷兰ITC的C.J.Van Westen和哥伦比亚IGAC的J.B.Alzate Bonilla(1990)基于GIS对山区地质灾害进行分析。他们在数据采集、整理方面做了大量工作,建立了一套完整的数据库。在此基础上,开发出了分析评价模型,如斜坡稳定性分析模型,其主要功能是计算斜坡稳定的安全系数。另外,两位学者还利用GIS所生成的数字高程模型(DEM),开发出了一部山区落石滚落速率计算模型,并据此绘出了研究区内落石速率分区图(黄润秋,2001)。

美国科罗拉多州立大学Mario Mejia-Navarro和Ellen E.Wohl(1994)在哥伦比亚的麦德林地区,用GIS进行地质灾害和风险评估(姜作勤,2008)。利用GIS对麦德林地区地质灾害进行了分析和研究,重点考虑了基岩和地表地质条件、构造地质条件、气候、地形、地貌单元及其形成作用、土地利用和水文条件等因素。根据各因素的组成成分和灾害之间的对应关系,把每一种因素细分为不同范畴等级,借助于GIS软件(GRASS)的空间信息存储、缓冲区分析、DEM模型及叠加分析等功能,对有关滑坡、洪水和河岸侵蚀等灾害倾向地区进行了灾害分析,并对某一具体事件各构成因素的脆弱性进行评价。

同样是美国科罗拉多州立大学Mario Mejia-Navarro博士后等人(1996)将GIS技术与决策支持系统(DSS)结合,利用GIS(主要是地质资源分析系统GRASS软件)及工程数学模型建立了自然灾害及风险评估的决策支持系统并应用在科罗拉多州的Glenwood Springs地区(姜作勤等,2001)。应用GIS建立指标数据库,并建立基于GIS的多个控制变量的权重关系式。对泥石流、洪水、地面沉降、由风引起的火灾等灾种进行了灾害敏感性分析、脆弱性分析及风险评估,辅助政府部门做出决策。

美国地质调查局(USGS)已把加强城市地质灾害研究列为21世纪初的重要工作,借助GIS编制美国主要城市地区多种灾害的数字化图件,这种做法与西欧国家的城市地质工作的总趋势一致。其中,美国科罗拉多州格伦伍德斯普林市的城市地质灾害评价项目最具代表性。由于该市位于山区河谷地区,崩滑流地质灾害制约着城市的发展,为此,城市规划部门委托科罗拉多州立大学,开展了GIS地质灾害易损性和风险评价编图研究,最终按14种土地利用适宜性等级,对评价区进行了土地利用区划,圈出了未来城市发展的适宜地段和高风险区,在此基础上建立了城市整体化决策支持系统。

综上所述,可以看出,国外尤其是发达国家将 GIS 应用于地质灾害研究起步较早(表1),研究程度已远远超过我们,此方面的应用也随着GIS技术的自身发展而深入(黄润秋,2001)。

2.GIS在地质矿产勘查中的应用

地质信息系统与现代地球及其相关科学日益增长的需求相适应,以处理地球上任何具有空间方位的海量信息为特征,具定量、定时、定位等优点,近10年来已在地质矿产勘查中得到广泛应用。一个区域各种地质资料(图形、图像、文字、逻辑、数值)的GIS分析实际上代表该区域现阶段较为客观的总认识。目前,野外收集资料、数据建库、GIS分析等尚存在规范化、标准化等问题,GIS本身解决诸多专业性较强地质问题的能力亦不足。但GIS的进一步发展与完善必将使地质矿产勘查进入一个数字化的新时期(周军等,2002)。

GIS因解决地质问题而产生,其雏形可以追溯到20 世纪60 年代。加拿大测量学家R.F.Tomlinson首先于1963年提出地质信息系统这一术语,建成世界上第一个GIS即加拿大GIS(CGIS)一并应用于资源管理与规划。1970~1976年间美国联邦地质调查局建成50多个信息系统并进行综合地质研究,德国在1986 年建成DASCH系统,瑞典、日本等国也陆续建有自己的GIS。GIS的发展与计算机科学的高速发展并行,主要发生在过去的20年中,而近10年来发展更快(周军等,2002)。

表1 国外GIS在地质环境与地质灾害研究中的应用

GIS因解决地质问题而产生,其雏形可以追溯到20 世纪60 年代。加拿大测量学家R.F.Tomlinson首先于1963年提出地质信息系统这一术语,建成世界上第一个GIS即加拿大GIS(CGIS)一并应用于资源管理与规划。1970~1976年间美国联邦地质调查局建成50多个信息系统并进行综合地质研究,德国在1986 年建成DASCH系统,瑞典、日本等国也陆续建有自己的GIS。GIS的发展与计算机科学的高速发展并行,主要发生在过去的20年中,而近10年来发展更快(周军等,2002)。

ArcInfo与ArcView GIS是当前最流行的两个软件包,为美国ESRI(Environmental Systems Research Institute,Inc.)的重要产品,被许多国家官方确定为国土资源、地质、环境等管理、研究的主要地质信息系统。ESRI始建于1969年,由Jack Dansermond和Laura Dangermond用自己平时积蓄的1100美元起步,经过20世纪70年代的艰苦奋斗,1981年推出新型ArcInfo,1986年微机版的PC ArcInfo投入市场,1991 年又一力作ArcView GIS问世。1981年ESRI在其Redlands总部召开首次用户会议,仅18人到场,而1998年的用户大会有来自90个国家的8000多位代表。

ESRI的发展史反映了GIS从无到有、从弱到强、迅速成长壮大的发展历程,也从一个侧面显示出GIS巨大的市场潜力和难以估量的应用价值。

据悉,1995年市场上有报价的GIS 软件已达上千种,但主要占据市场的不过10 余种。除上述提到的ArcInfo与ArcView GIS外,国外的GIS代表作还有MapInfo、ErMapper、Idrisi Endas、Erdas、Genamap、Spans、Tigris等。

GIS已在地质矿产勘查中得到广泛应用,并取得许多瞩目成果。美国、加拿大、澳大利亚早在1985~1989年就将其应用于地质矿产调查和填图。目前,澳大利亚开始利用笔记本电脑以数字形式采集野外地质数据,建立有关数据库,借助ArcInfo与ArcViewGIS编制第二代地质图件。

三、资料来源

曹修定,阮俊等.2007.GIS技术在地质灾害信息系统中的应用.中国地质灾害与防治学报,18(3):112~115

黄润秋.2001.面向21世纪地质环境管理及地质灾害评价的信息技术.国土资源科技管理,18:30~34

姜作勤.2008.国内外区域地质调查全过程信息化的现状与特点.地质通报,27(7):956~964

姜作勤,张明华.2001.野外地质数据采集信息化所涉及的主要技术及其进展.中国地质,28(2):36~42

赵金平,焦述强.2004.基于GIS的地质环境评价在国外的研究现状.南通工学院学报(自然科学版),3(2):46~50

周军,梁云.2002.地理信息系统及其在地质矿产勘查中的应用.西安工程学院学报,24(2):47~50


新闻名称:gis技术地质勘查 arcgis在地质方面主要用途
本文路径:http://cdxtjz.cn/article/dojijhh.html

其他资讯