189 8069 5689

c语言中如何理解递归函数 C语言函数递归

c语言递归函数

递归(recursion)就是子程序(或函数)直接调用自己或通过一系列调用语句间接调用自己,是一种描述问题和解决问题的基本方法。

让客户满意是我们工作的目标,不断超越客户的期望值来自于我们对这个行业的热爱。我们立志把好的技术通过有效、简单的方式提供给客户,将通过不懈努力成为客户在信息化领域值得信任、有价值的长期合作伙伴,公司提供的服务项目有:域名注册、网络空间、营销软件、网站建设、仁化网站维护、网站推广。

递归通常用来解决结构自相似的问题。所谓结构自相似,是指构成原问题的子问题与原问题在结构上相似,可以用类似的方法解决。具体地,整个问题的解决,可以分为两部分:第一部分是一些特殊情况,有直接的解法;第二部分与原问题相似,但比原问题的规模小。实际上,递归是把一个不能或不好解决的大问题转化为一个或几个小问题,再把这些小问题进一步分解成更小的问题,直至每个小问题都可以直接解决。因此,递归有两个基本要素:

(1)边界条件:确定递归到何时终止,也称为递归出口。

(2)递归模式:大问题是如何分解为小问题的,也称为递归体。递归函数只有具备了这两个要素,才能在有限次计算后得出结果

汉诺塔问题:对汉诺塔问题的求解,可以通过以下3个步骤实现:

(1)将塔上的n-1个碟子借助塔C先移到塔B上;

(2)把塔A上剩下的一个碟子移到塔C上;

(3)将n-1个碟子从塔B借助塔A移到塔C上。

在递归函数中,调用函数和被调用函数是同一个函数,需要注意的是递归函数的调用层次,如果把调用递归函数的主函数称为第0层,进入函数后,首次递归调用自身称为第1层调用;从第i层递归调用自身称为第i+1层。反之,退出第i+1层调用应该返回第i层。采用图示方法描述递归函数的运行轨迹,从中可较直观地了解到各调用层次及其执行情况,具体方法如下:

(1)写出函数当前调用层执行的各语句,并用有向弧表示语句的执行次序;

(2)对函数的每个递归调用,写出对应的函数调用,从调用处画一条有向弧指向被调用函数入口,表示调用路线,从被调用函数末尾处画一条有向弧指向调用语句的下面,表示返回路线;

(3)在返回路线上标出本层调用所得的函数值。n=3时汉诺塔算法的运行轨迹如下图所示,有向弧上的数字表示递归调用和返回的执行顺序

三、递归函数的内部执行过程

一个递归函数的调用过程类似于多个函数的嵌套的调用,只不过调用函数和被调用函数是同一个函数。为了保证递归函数的正确执行,系统需设立一个工作栈。具体地说,递归调用的内部执行过程如下:

(1)运动开始时,首先为递归调用建立一个工作栈,其结构包括值参、局部变量和返回地址;

(2)每次执行递归调用之前,把递归函数的值参和局部变量的当前值以及调用后的返回地址压栈;

(3)每次递归调用结束后,将栈顶元素出栈,使相应的值参和局部变量恢复为调用前的值,然后转向返回地址指定的位置继续执行。

上述汉诺塔算法执行过程中,工作栈的变化如下图所示,其中栈元素的结构为(返回地址,n值,A值,B值,C值),返回地址对应算法中语句的行号,分图的序号对应图中递归调用和返回的序号

我可以帮助你,你先设置我最佳答案后,我百度Hii教你。

在C语言中什么叫递归

递归:就是自己调自己,但是没终止条件会死循环,所以你的递归代码里有结束自调自的条件,这样就创造了有限次的循环(代码中你看不到for或foreach但是有循环发生)

C语言中的递归是什么意思

程序调用自身的编程技巧称为递归( recursion)。递归做为一种算法在程序设计语言中广泛应用。 一个过程或函数在其定义或说明中有直接或间接调用自身的一种方法,它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解。

递归策略只需少量的程序就可描述出解题过程所需要的多次重复计算,大大地减少了程序的代码量。递归的能力在于用有限的语句来定义对象的无限集合。

一般来说,递归需要有边界条件、递归前进段和递归返回段。当边界条件不满足时,递归前进;当边界条件满足时,递归返回。

扩展资料:

递归的应用

1、数据的定义是按递归定义的。(Fibonacci函数)

2、问题解法按递归算法实现。这类问题虽则本身没有明显的递归结构,但用递归求解比迭代求解更简单,如Hanoi问题。

3、数据的结构形式是按递归定义的。

递归的缺点

递归算法解题相对常用的算法如普通循环等,运行效率较低。因此,应该尽量避免使用递归,除非没有更好的算法或者某种特定情况,递归更为适合的时候。在递归调用的过程当中系统为每一层的返回点、局部量等开辟了栈来存储。递归次数过多容易造成栈溢出等。

参考资料来源:百度百科-递归


文章标题:c语言中如何理解递归函数 C语言函数递归
网页地址:http://cdxtjz.cn/article/doojhhg.html

其他资讯