189 8069 5689

有哪些经典的C语言面试题

有哪些经典的C语言面试题?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

创新互联公司是一家集网站建设,钟楼企业网站建设,钟楼品牌网站建设,网站定制,钟楼网站建设报价,网络营销,网络优化,钟楼网站推广为一体的创新建站企业,帮助传统企业提升企业形象加强企业竞争力。可充分满足这一群体相比中小企业更为丰富、高端、多元的互联网需求。同时我们时刻保持专业、时尚、前沿,时刻以成就客户成长自我,坚持不断学习、思考、沉淀、净化自己,让我们为更多的企业打造出实用型网站。

1 预处理

问题1:什么是预编译?何时需要预编译?

答:

预编译又称预处理,是整个编译过程最先做的工作,即程序执行前的一些预处理工作。主要处理#开头的指令。如拷贝#include包含的文件代码、替换#define定义的宏、条件编译#if等。.

何时需要预编译:

1、总是使用不经常改动的大型代码体。

2、程序由多个模块组成,所有模块都使用一组标准的包含文件和相同的编译选项。在这种情况下,可以将所有包含文件预编译为一个预编译头。

问题2:写一个标准宏,这个宏输入两个参数并返回较小的一个

:#define MIN(x, y) ((x)<(y)?(x):(y)) //结尾没有;

问题3###的作用?

答:#是把宏参数转化为字符串的运算符,##是把两个宏参数连接的运算符。

例如:

#define STR(arg) #arg  则宏STR(hello)展开时为”hello”

#define NAME(y) name_y 则宏NAME(1)展开时仍为name_y

#define NAME(y) name_##y 则宏NAME(1)展开为name_1

#define DECLARE(name, type) typename##_##type##_type

则宏DECLARE(val, int)展开为int val_int_type

问题4:如何避免头文件被重复包含?

答:

例如,为避免头文件my_head.h被重复包含,可在其中使用条件编译:

#ifndef _MY_HEAD_H
#define _MY_HEAD_H /*空宏*/
/*其他语句*/
#endif

2 关键字

问题1static关键字的作用?

答:

Static的用途主要有两个,一是用于修饰存储类型使之成为静态存储类型,二是用于修饰链接属性使之成为内部链接属性。

1静态存储类型:

在函数内定义的静态局部变量,该变量存在内存的静态区,所以即使该函数运行结束,静态变量的值不会被销毁,函数下次运行时能仍用到这个值。

在函数外定义的静态变量——静态全局变量,该变量的作用域只能在定义该变量的文件中,不能被其他文件通过extern引用。

2 内部链接属性

静态函数只能在声明它的源文件中使用。

问题2const关键字的作用?

答:

1声明常变量,使得指定的变量不能被修改。

const int a = 5;/*a的值一直为5,不能被改变*/

const int b; b = 10;/*b的值被赋值为10后,不能被改变*/

const int *ptr; /*ptr为指向整型常量的指针,ptr的值可以修改,但不能修改其所指向的值*/

int *const ptr;/*ptr为指向整型的常量指针,ptr的值不能修改,但可以修改其所指向的值*/

const int *const ptr;/*ptr为指向整型常量的常量指针,ptr及其指向的值都不能修改*/

2修饰函数形参,使得形参在函数内不能被修改,表示输入参数。

int fun(const int a);int fun(const char *str);

3修饰函数返回值,使得函数的返回值不能被修改。

const char *getstr(void);使用:const *str= getstr();

const int getint(void); 使用:const int a =getint();

问题3volatile关键字的作用?

答:

volatile指定的关键字可能被系统、硬件、进程/线程改变,强制编译器每次从内存中取得该变量的值,而不是从被优化后的寄存器中读取。例子:硬件时钟;多线程中被多个任务共享的变量等。

问题4extern关键字的作用?

答:

1用于修饰变量或函数,表明该变量或函数都是在别的文件中定义的,提示编译器在其他文件中寻找定义。

extern int a;
extern int *p;
extern int array[];
extern void fun(void);

其中,在函数的声明带有关键字extern,仅仅是暗示这个函数可能在别的源文件中定义,没有其他作用。如:

头文件AA_MODULE.h中包含

extern int func(int a, int b);

源文件A: A_MODULE.c

#include “A_MODULE.h”
int func(int a, int b)
{
 returna+b;
}

此时,展开头文件A_MODULE.h后,为

extern int func(int a, int b);/*虽然暗示可能在别的源文件中定义,但又在本文件中定义,所以extern并没有起到什么作用,但也不会产生错误*/

int func(int a, int b)
{
 returna+b;
}
而源文件B:B_MODULE.c中,
#include “A_MODULE.h”
int ret = func(10,5);/
展开头文件A_MODULE.h后,为
extern int func(int a, int b);/*暗示在别的源文件中定义,所以在下面使用func(5,10)时,在链接的时候到别的目标文件中寻找定义*/
int ret = func(10,5);

2 用于extern “c

extern “c”的作用就是为了能够正确实现C++代码调用其他C语言代码。加上extern "C"后,会指示编译器这部分代码按C语言的编译方式进行编译,而不是C++的。

C++作为一种与C兼容的语言,保留了一部分面向过程语言的特点,如可以定义不属于任何类的全局变量和函数,但C++毕竟是一种面向对象的语言,为了支持函数的重载,对函数的编译方式与C的不同。例如,在C++中,对函数void fun(int,int)编译后的名称可能是_fun_int_int,而C中没有重载机制,一般直接利用函数名来指定编译后函数的名称,如上面的函数编译后的名称可能是_fun

这样问题就来了,如果在C++中调用的函数如上例中的fun(1,2)是用C语言在源文件a_module.c中实现和编译的,那么函数fun在目标文件a_module.obj中的函数名为_fun,而C++在源文件b_module.cpp通过调用其对外提供的头文件a_module.h引用后,调用fun,则直接以C++的编译方式来编译,使得fun编译后在目标文件b_module.obj的名称为_fun_int_int,这样在链接的时候,因为_fun_int_int的函数在目标文件a_module.obj中不存在,导致了链接错误。

解决方法是让b_module.cpp知道函数fun是用C语言实现和编译了,在调用的时候,采用与C语言一样的方式来编译。该方法可以通过extern “C”来实现(具体用法见下面)。一般,在用C语言实现函数的时候,要考虑到这个函数可能会被C++程序调用,所以在设计头文件时,应该这样声明头文件:

/*头文件a_module.h*/
/*头文件被CPP文件include时,CPP文件中都含有该自定义的宏__cplusplus*/
/*这样通过extern “C”告诉C++编译器,extern “C”{}里包含的函数都用C的方式来编译*/
#ifdef __cplusplus 
extern “C”
{
#endif
extern void fun(int a, int b);
#ifdef __cplusplus
}
#endif

extern "C"的使用方式

1. 可以是单一语句

  extern "C" doublesqrt(double);

2. 可以是复合语句, 相当于复合语句中的声明都加了extern "C"

    extern "C"
  {
  double sqrt(double);
  int min(int, int);
  }

3.可以包含头文件,相当于头文件中的声明都加了extern"C"

   extern "C"
  {
    #include 
  }

4. 不可以将extern"C" 添加在函数内部

5. 如果函数有多个声明,可以都加extern"C", 也可以只出现在第一次声明中,后面的声明会接受第一个链接指示符的规则。

6. extern"C", 还有extern "FORTRAN" 等。

问题5sizeof关键字的作用?

答:

sizeof是在编译阶段处理,且不能被编译为机器码。sizeof的结果等于对象或类型所占的内存字节数。sizeof的返回值类型为size_t

变量:int a; sizeof(a)4

指针:int *p; sizeof(p)4

数组:int b[10]; sizeof(b)为数组的大小,4*10int c[0]; sizeof(c)等于0

结构体:struct (int a; char ch;)s1; sizeof(s1)8 与结构体字节对齐有关。

注意:不能对结构体中的位域成员使用sizeof

sizeof(void)等于1

sizeof(void *)等于4

3 结构体

问题1:结构体的赋值?

答:

C语言中对结构体变量的赋值或者在初始化或者在定义后按字段赋值。

方式1:初始化

struct tag
{
 chara;
 int b;
}x = {‘A’, 1};/*初始化*/
或
struct tag
{
char a;
int b;
};
struct tag x = {‘A’,1};/*在定义变量时初始化*/

GNU C中可使用另外一种方式:

struct tag
{
char a;
int b;
}x =
{
.a = ‘A’,
.b =1;
};
或
struct tag
{
char a;
int b;
};
struct tag x =
{
 .a= ‘A’,
 .b=1,
};

方式2:定义变量后按字段赋值

struct tag
{
char a;
int b;
};
struct tag x;/*定义变量*/
x.a = ‘A’;/*按字段赋值*/
x.b = 1; /*按字段赋值*/

而当你使用初始化的方式来赋值时,如x = {‘A’,1};则出错。

方式3:结构变量间的赋值

struct tag
{
 chara;
 int b;
};
struct tag x,y;
x.a=’A’;
x.b=1;
y = x;/*结构变量间直接赋值*/

问题2:结构体变量如何比较?

答:虽然结构体变量之间可以通过=直接赋值,但不同通过比较符如==来比较,因为比较符只作用于基本数据类型。这个时候,只能通过int memcmp(const void *s1, const void *s2, size_t n);来进行内存上的比较。

问题3:结构体位域

答:

位域是一个或多个位的字段,不同长度的字段(如声明为unsigned int类型)存储于一个或多个其所声明类型的变量中(如整型变量中)。

位域的类型:可以是charshortint,多数使用int,使用时最好带上signedunsigned

位域的特点:字段可以不命名,如unsignedint :1;可用来填充;unsigned int :0; 0宽度用来强制在下一个整型(因此处是unsigned int类型)边界上对齐。

位域的定义:

struct st1
{
unsigned chara:7;/*字段a占用了一个字节的7个bit*/
unsigned charb:2;/*字段b占用了2个bit*/
unsigned charc:7;/*字段c占用了7个bit*/
}s1;

sizeof(s1)等于3。因为一个位域字段必须存储在其位域类型的一个单元所占空间中,不能横跨两个该位域类型的单元。也就是说,当某个位域字段正处于两个该位域类型的单元中间时,只使用第二个单元,第一个单元剩余的bit位置补(pad0

于是可知Sizeof(s2)等于3*sizeof(int)12

struct st2
{
unsigned inta:31;
unsigned intb:2;/*前一个整型变量只剩下1个bit,容不下2个bit,所以只能存放在下一个整型变量*/
unsigned int c:31;
}s2;

位域的好处:

      1.有些信息在存储时,并不需要占用一个完整的字节, 而只需占几个或一个二进制位。例如在存放一个开关量时,只有01 两种状态,用一位二进位即可。这样节省存储空间,而且处理简便。这样就可以把几个不同的对象用一个字节的二进制位域来表示。
       2.可以很方便的利用位域把一个变量给按位分解。比如只需要4个大小在03的随即数,就可以只rand()一次,然后每个位域取2个二进制位即可,省时省空间。

位域的缺点:

不同系统对位域的处理可能有不同的结果,如位段成员在内存中是从左向右分配的还是从右向左分配的,所以位域的使用不利于程序的可移植性。

问题4:结构体成员数组大小为0

结构体数组成员的大小为0GNU C的一个特性。好处是可以在结构体中分配不定长的大小。如

typedef struct st
{
 inta;
int b;
char c[0];
}st_t;
sizeof(st_t)等于8,即char c[0]的大小为0.
#define SIZE 100
st_t *s = (st_t *)malloc(sizeof(st_t) + SIZE);

4 函数

问题1:函数参数入栈顺序

答:

C语言函数参数入栈顺序是从右向左的,这是由编译器决定的,更具体的说是函数调用约定决定了参数的入栈顺序。C语言采用是函数调用约定是__cdecl的,所以对于函数的声明,完整的形式是:int __cdecl func(int a, int b);

问题2inline内联函数

答:

inline关键字仅仅是建议编译器做内联展开处理,即是将函数直接嵌入调用程序的主体,省去了调用/返回指令。

5 内存分配回收

问题1 malloc/freenew/delete的区别

答:

1) mallocfreeC/C++语言的标准库函数,new/deleteC++的运算符。它们都可用于申请动态内存和释放内存。

2) 对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的对象没有构造与析构的过程,对它们而言malloc/freenew/delete是等价的。

3) 既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
如果用free释放“new创建的动态对象,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存,结果也会导致程序出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。

问题2malloc(0)返回值

答:如果请求的长度为0,则标准C语言函数malloc返回一个null指针或不能用于访问对象的非null指针,该指针能被free安全使用。

6 可变参数列表

可变参数列表是通过宏来实现的,这些宏定义在stdarg.h头文件,它是标准库的一部分。这个头文件声明了一个类型va_list和三个宏:va_startva_argva_end

typedef char *va_list;
#define va_start(ap, A)  (void)((ap) = (char *)&(A) + _Bnd(A, _AUPBND))
#define va_arg(ap, T) (*(T )((ap) += _Bnd(T, _AUPBND)) - _Bnd(T, _ADNBND)))
#define va_end(ap) (void)0
int print(char *format, …)

va_start的第一个参数是va_list类型的变量,第二个参数是省略号前最后一个有名字的参数,功能是初始化va_list类型的变量,将其值设置为可变参数的第一个变量。

va_arg的第一个参数是va_list类型的变量,第二个参数是参数列表的下一个参数的类型。va_arg返回va_list变量的值,并使该变量指向下一个可变参数。

va_end是在va_arg访问完最后一个可变参数之后调用的。

问题1:实现printf函数

/*(转载)
 * A simple printf function. Only support the following format:
 * Code Format
 * %c character
 * %d signed integers
 * %i signed integers
 * %s a string of characters
 * %o octal
 * %x unsigned hexadecimal
 */
int my_printf( const char* format, ...)
{
    va_list arg;
    int done = 0;

    va_start (arg, format); 

    while( *format != '\0')
    {
        if( *format == '%')
        {
            if( *(format+1) == 'c' )
            {
                char c = (char)va_arg(arg, int);
                putc(c, stdout);
            } else if( *(format+1) == 'd' || *(format+1) == 'i')
            {
                char store[20];
                int i = va_arg(arg, int);
                char* str = store;
                itoa(i, store, 10);
                while( *str != '\0') putc(*str++, stdout); 
            } else if( *(format+1) == 'o')
            {
                char store[20];
                int i = va_arg(arg, int);
                char* str = store;
                itoa(i, store, 8);
                while( *str != '\0') putc(*str++, stdout); 
            } else if( *(format+1) == 'x')
            {
                char store[20];
                int i = va_arg(arg, int);
                char* str = store;
                itoa(i, store, 16);
                while( *str != '\0') putc(*str++, stdout); 
            } else if( *(format+1) == 's' )
            {
                char* str = va_arg(arg, char*);
                while( *str != '\0') putc(*str++, stdout);
            }

            // Skip this two characters.

            format += 2;
        } else {
            putc(*format++, stdout);
        }
    }

    va_end (arg);

    return done;
}

7 其他

问题1:ASSERT()的作用

:ASSERT()是一个调试程序时经常使用的宏,在程序运行时它计算括号内的表达式,如果表达式为FALSE (0), 程序将报告错误,并终止执行。如果表达式不为0,则继续执行后面的语句。这个宏通常原来判断程序中是否出现了明显非法的数据,如果出现了终止程序以免导致严重后果,同时也便于查找错误。例如,变量n在程序中不应该为0,如果为0可能导致错误,你可以这样写程序:

......

ASSERT( n != 0);

k = 10/ n;

.....

ASSERT只有在Debug版本中才有效,如果编译为Release版本则被忽略。

assert()的功能类似,它是ANSI C标准中规定的函数,它与ASSERT的一个重要区别是可以用在Release版本中。

问题2:system("pause");的作用

:系统的暂停程序,按任意键继续,屏幕会打印,"按任意键继续。。。。。"省去了使用getchar();

问题3:请问C++的类和C里面的struct有什么区别?

:c++中的类具有成员保护功能,并且具有继承,多态这类oo特点,而c里的struct没有。c里面的struct没有成员函数,不能继承,派生等等.

8 找错题

试题1:

void test1()
{
  char string[10];
  char* str1 = "0123456789";
  strcpy(string, str1);
}

解答:字符串str1有11个字节(包括末尾的结束符'\0'),而string只有10个字节,故而strcpy会导致数组string越界。

试题2:

void test2()
{
  char string[10], str1[10];
  int i;
  for(i=0; i<10; i++)
  {
      str1= 'a';
  }
  strcpy(string, str1);
}

解答:因为str1没有结束符'\0',故而strcpy复制的字符数不确定。strcpy源码如下:

#include 

char *strcpy(char *s1, cosnt char *s2)

{

char *s = s1;

for (s = s1; (*s++ = *s2++) != '\0';)/*最后的结束符'\0'也会被复制*/

;

return s1;

}

试题3:

void test3(char* str1)
{
  char string[10];
  if(strlen(str1) <= 10 )
  {
      strcpy(string, str1);
  }
}

解答:应修改为if (strlen(str1) < 10),因为strlen的结果未统计最后的结束符'\0'。strlen的源码如下:

#include 

size_t strlen(const char *s)

{

const char *sc;

for (sc = s; *sc != '\0'; ++sc)/*不包含最后的结束符'\0'*/

;

return (sc - s);

}

试题4:

void GetMemory(char *p)
{
  p = (char *)malloc( 100 );
}
void Test( void )
{
  char *str = NULL;
  GetMemory(str);
  strcpy(str,"hello world");
  printf(str);
}


解答:C语言中的函数参数为传值参数,在函数内对形参的修改并不能改变对应实参的值。故而调用GetMemory后,str仍为NULL。

试题5:

char *GetMemory( void )
{
  char p[] = "hello world";
  return p;
}
void Test( void )
{
  char *str = NULL;
  str = GetMemory();
  printf(str);
}

解答:GetMemory中,p为局部变量,在函数返回后,该局部变量被回收。故而str仍为NULL

试题6:

void GetMemory( char **p, int num )
{
  *p = (char *)malloc(num);
}
void Test( void )
{
  char *str = NULL;
  GetMemory(&str, 100);
  strcpy(str, "hello");
  printf(str);
}

解答:试题6避免了试题4的问题,但在GetMemory内,未对*p为NULL情况的判断。当*p不为NULL时,在printf后,也未对malloc的空间进行free

试题7:

void Test( void )
{
  char *str = (char *)malloc( 100 );
  strcpy(str, "hello" );
  free(str);
  ... //省略的其它语句
}

解答:未对str为NULL的情况的判断,在free(str)后,str未设置为NULL,可能变成一个野指针(后面对str的操作可能会导致踩内存)。

试题8:

swap(int* p1,int* p2)
{
  int *p;
  *p = *p1;
  *p1 = *p2;
  *p2 = *p;
}

解答:在swap函数中,p是个野指针,可能指向系统区,导致程序运行的崩溃。故而,程序应改为:

swap(int* p1,int* p2)
{
  int p;
  p = *p1;
  *p1 = *p2;
  *p2 = p;
}

9 编程题

1:判断字符串str2是否在字符串str1里。

#include 



#define OK 1

#define ERROR 0



int str_str(const char *str1, const char *str2)

{

const char *s1 = NULL;

const char *s2 = NULL;



if (str1 == NULL)

{

return (str2 == NULL) ? OK : ERROR;

}



if (str2 == NULL)

{

return OK;

}



for (; *str1 != '\0'; str1++)

{

if (*str1 == *str2)

{

for (s1 = str1, s2 = str2; ; )

{

if (*++s2 == '\0')

{

return OK;

}

else if (*++s1 != *s2)

{

break;

}

}

}

}



return ERROR;

}

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注创新互联行业资讯频道,感谢您对创新互联的支持。


当前题目:有哪些经典的C语言面试题
URL网址:http://cdxtjz.cn/article/gcccoc.html

其他资讯