189 8069 5689

PostgreSQL中BufTableInsert函数有什么作用

本篇内容介绍了“PostgreSQL中BufTableInsert函数有什么作用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

和顺ssl适用于网站、小程序/APP、API接口等需要进行数据传输应用场景,ssl证书未来市场广阔!成为创新互联公司的ssl证书销售渠道,可以享受市场价格4-6折优惠!如果有意向欢迎电话联系或者加微信:18982081108(备注:SSL证书合作)期待与您的合作!

一、数据结构

BufferDesc
共享缓冲区的共享描述符(状态)数据

/*
 * Flags for buffer descriptors
 * buffer描述器标记
 *
 * Note: TAG_VALID essentially means that there is a buffer hashtable
 * entry associated with the buffer's tag.
 * 注意:TAG_VALID本质上意味着有一个与缓冲区的标记相关联的缓冲区散列表条目。
 */
//buffer header锁定
#define BM_LOCKED               (1U << 22)  /* buffer header is locked */
//数据需要写入(标记为DIRTY)
#define BM_DIRTY                (1U << 23)  /* data needs writing */
//数据是有效的
#define BM_VALID                (1U << 24)  /* data is valid */
//已分配buffer tag
#define BM_TAG_VALID            (1U << 25)  /* tag is assigned */
//正在R/W
#define BM_IO_IN_PROGRESS       (1U << 26)  /* read or write in progress */
//上一个I/O出现错误
#define BM_IO_ERROR             (1U << 27)  /* previous I/O failed */
//开始写则变DIRTY
#define BM_JUST_DIRTIED         (1U << 28)  /* dirtied since write started */
//存在等待sole pin的其他进程
#define BM_PIN_COUNT_WAITER     (1U << 29)  /* have waiter for sole pin */
//checkpoint发生,必须刷到磁盘上
#define BM_CHECKPOINT_NEEDED    (1U << 30)  /* must write for checkpoint */
//持久化buffer(不是unlogged或者初始化fork)
#define BM_PERMANENT            (1U << 31)  /* permanent buffer (not unlogged,
                                             * or init fork) */
/*
 *  BufferDesc -- shared descriptor/state data for a single shared buffer.
 *  BufferDesc -- 共享缓冲区的共享描述符(状态)数据
 *
 * Note: Buffer header lock (BM_LOCKED flag) must be held to examine or change
 * the tag, state or wait_backend_pid fields.  In general, buffer header lock
 * is a spinlock which is combined with flags, refcount and usagecount into
 * single atomic variable.  This layout allow us to do some operations in a
 * single atomic operation, without actually acquiring and releasing spinlock;
 * for instance, increase or decrease refcount.  buf_id field never changes
 * after initialization, so does not need locking.  freeNext is protected by
 * the buffer_strategy_lock not buffer header lock.  The LWLock can take care
 * of itself.  The buffer header lock is *not* used to control access to the
 * data in the buffer!
 * 注意:必须持有Buffer header锁(BM_LOCKED标记)才能检查或修改tag/state/wait_backend_pid字段.
 * 通常来说,buffer header lock是spinlock,它与标记位/参考计数/使用计数组合到单个原子变量中.
 * 这个布局设计允许我们执行原子操作,而不需要实际获得或者释放spinlock(比如,增加或者减少参考计数).
 * buf_id字段在初始化后不会出现变化,因此不需要锁定.
 * freeNext通过buffer_strategy_lock锁而不是buffer header lock保护.
 * LWLock可以很好的处理自己的状态.
 * 务请注意的是:buffer header lock不用于控制buffer中的数据访问!
 *
 * It's assumed that nobody changes the state field while buffer header lock
 * is held.  Thus buffer header lock holder can do complex updates of the
 * state variable in single write, simultaneously with lock release (cleaning
 * BM_LOCKED flag).  On the other hand, updating of state without holding
 * buffer header lock is restricted to CAS, which insure that BM_LOCKED flag
 * is not set.  Atomic increment/decrement, OR/AND etc. are not allowed.
 * 假定在持有buffer header lock的情况下,没有人改变状态字段.
 * 持有buffer header lock的进程可以执行在单个写操作中执行复杂的状态变量更新,
 *   同步的释放锁(清除BM_LOCKED标记).
 * 换句话说,如果没有持有buffer header lock的状态更新,会受限于CAS,
 *   这种情况下确保BM_LOCKED没有被设置.
 * 比如原子的增加/减少(AND/OR)等操作是不允许的.
 *
 * An exception is that if we have the buffer pinned, its tag can't change
 * underneath us, so we can examine the tag without locking the buffer header.
 * Also, in places we do one-time reads of the flags without bothering to
 * lock the buffer header; this is generally for situations where we don't
 * expect the flag bit being tested to be changing.
 * 一种例外情况是如果我们已有buffer pinned,该buffer的tag不能改变(在本进程之下),
 *   因此不需要锁定buffer header就可以检查tag了.
 * 同时,在执行一次性的flags读取时不需要锁定buffer header.
 * 这种情况通常用于我们不希望正在测试的flag bit将被改变.
 *
 * We can't physically remove items from a disk page if another backend has
 * the buffer pinned.  Hence, a backend may need to wait for all other pins
 * to go away.  This is signaled by storing its own PID into
 * wait_backend_pid and setting flag bit BM_PIN_COUNT_WAITER.  At present,
 * there can be only one such waiter per buffer.
 * 如果其他进程有buffer pinned,那么进程不能物理的从磁盘页面中删除items.
 * 因此,后台进程需要等待其他pins清除.这可以通过存储它自己的PID到wait_backend_pid中,
 *   并设置标记位BM_PIN_COUNT_WAITER.
 * 目前,每个缓冲区只能由一个等待进程.
 *
 * We use this same struct for local buffer headers, but the locks are not
 * used and not all of the flag bits are useful either. To avoid unnecessary
 * overhead, manipulations of the state field should be done without actual
 * atomic operations (i.e. only pg_atomic_read_u32() and
 * pg_atomic_unlocked_write_u32()).
 * 本地缓冲头部使用同样的结构,但并不需要使用locks,而且并不是所有的标记位都使用.
 * 为了避免不必要的负载,状态域的维护不需要实际的原子操作
 * (比如只有pg_atomic_read_u32() and pg_atomic_unlocked_write_u32())
 *
 * Be careful to avoid increasing the size of the struct when adding or
 * reordering members.  Keeping it below 64 bytes (the most common CPU
 * cache line size) is fairly important for performance.
 * 在增加或者记录成员变量时,小心避免增加结构体的大小.
 * 保持结构体大小在64字节内(通常的CPU缓存线大小)对于性能是非常重要的.
 */
typedef struct BufferDesc
{
    //buffer tag
    BufferTag   tag;            /* ID of page contained in buffer */
    //buffer索引编号(0开始),指向相应的buffer pool slot
    int         buf_id;         /* buffer's index number (from 0) */
    /* state of the tag, containing flags, refcount and usagecount */
    //tag状态,包括flags/refcount和usagecount
    pg_atomic_uint32 state;
    //pin-count等待进程ID
    int         wait_backend_pid;   /* backend PID of pin-count waiter */
    //空闲链表链中下一个空闲的buffer
    int         freeNext;       /* link in freelist chain */
    //缓冲区内容锁
    LWLock      content_lock;   /* to lock access to buffer contents */
} BufferDesc;

BufferTag
Buffer tag标记了buffer存储的是磁盘中哪个block

/*
 * Buffer tag identifies which disk block the buffer contains.
 * Buffer tag标记了buffer存储的是磁盘中哪个block
 *
 * Note: the BufferTag data must be sufficient to determine where to write the
 * block, without reference to pg_class or pg_tablespace entries.  It's
 * possible that the backend flushing the buffer doesn't even believe the
 * relation is visible yet (its xact may have started before the xact that
 * created the rel).  The storage manager must be able to cope anyway.
 * 注意:BufferTag必须足以确定如何写block而不需要参照pg_class或者pg_tablespace数据字典信息.
 * 有可能后台进程在刷新缓冲区的时候深圳不相信关系是可见的(事务可能在创建rel的事务之前).
 * 存储管理器必须可以处理这些事情.
 *
 * Note: if there's any pad bytes in the struct, INIT_BUFFERTAG will have
 * to be fixed to zero them, since this struct is used as a hash key.
 * 注意:如果在结构体中有填充的字节,INIT_BUFFERTAG必须将它们固定为零,因为这个结构体用作散列键.
 */
typedef struct buftag
{
    //物理relation标识符
    RelFileNode rnode;          /* physical relation identifier */
    ForkNumber  forkNum;
    //相对于relation起始的块号
    BlockNumber blockNum;       /* blknum relative to begin of reln */
} BufferTag;

HTAB
哈希表的顶层控制结构.

/*
 * Top control structure for a hashtable --- in a shared table, each backend
 * has its own copy (OK since no fields change at runtime)
 * 哈希表的顶层控制结构.
 * 在这个共享哈希表中,每一个后台进程都有自己的拷贝
 * (之所以没有问题是因为fork出来后,在运行期没有字段会变化)
 */
struct HTAB
{
    //指向共享的控制信息
    HASHHDR    *hctl;           /* => shared control information */
    //段开始目录
    HASHSEGMENT *dir;           /* directory of segment starts */
    //哈希函数
    HashValueFunc hash;         /* hash function */
    //哈希键比较函数
    HashCompareFunc match;      /* key comparison function */
    //哈希键拷贝函数
    HashCopyFunc keycopy;       /* key copying function */
    //内存分配器
    HashAllocFunc alloc;        /* memory allocator */
    //内存上下文
    MemoryContext hcxt;         /* memory context if default allocator used */
    //表名(用于错误信息)
    char       *tabname;        /* table name (for error messages) */
    //如在共享内存中,则为T
    bool        isshared;       /* true if table is in shared memory */
    //如为T,则固定大小不能扩展
    bool        isfixed;        /* if true, don't enlarge */
    /* freezing a shared table isn't allowed, so we can keep state here */
    //不允许冻结共享表,因此这里会保存相关状态
    bool        frozen;         /* true = no more inserts allowed */
    /* We keep local copies of these fixed values to reduce contention */
    //保存这些固定值的本地拷贝,以减少冲突
    //哈希键长度(以字节为单位)
    Size        keysize;        /* hash key length in bytes */
    //段大小,必须为2的幂
    long        ssize;          /* segment size --- must be power of 2 */
    //段偏移,ssize的对数
    int         sshift;         /* segment shift = log2(ssize) */
};
/*
 * Header structure for a hash table --- contains all changeable info
 * 哈希表的头部结构 -- 存储所有可变信息
 *
 * In a shared-memory hash table, the HASHHDR is in shared memory, while
 * each backend has a local HTAB struct.  For a non-shared table, there isn't
 * any functional difference between HASHHDR and HTAB, but we separate them
 * anyway to share code between shared and non-shared tables.
 * 在共享内存哈希表中,HASHHDR位于共享内存中,每一个后台进程都有一个本地HTAB结构.
 * 对于非共享哈希表,HASHHDR和HTAB没有任何功能性的不同,
 * 但无论如何,我们还是把它们区分为共享和非共享表.
 */
struct HASHHDR
{
    /*
     * The freelist can become a point of contention in high-concurrency hash
     * tables, so we use an array of freelists, each with its own mutex and
     * nentries count, instead of just a single one.  Although the freelists
     * normally operate independently, we will scavenge entries from freelists
     * other than a hashcode's default freelist when necessary.
     * 在高并发的哈希表中,空闲链表会成为竞争热点,因此我们使用空闲链表数组,
     *   数组中的每一个元素都有自己的mutex和条目统计,而不是使用一个.
     *
     * If the hash table is not partitioned, only freeList[0] is used and its
     * spinlock is not used at all; callers' locking is assumed sufficient.
     * 如果哈希表没有分区,那么只有freelist[0]元素是有用的,自旋锁没有任何用处;
     * 调用者锁定被认为已足够OK.
     */
    FreeListData freeList[NUM_FREELISTS];
    /* These fields can change, but not in a partitioned table */
    //这些域字段可以改变,但不适用于分区表
    /* Also, dsize can't change in a shared table, even if unpartitioned */
    //同时,就算是非分区表,共享表的dsize也不能改变
    //目录大小
    long        dsize;          /* directory size */
    //已分配的段大小(<= dbsize)
    long        nsegs;          /* number of allocated segments (<= dsize) */
    //正在使用的最大桶ID
    uint32      max_bucket;     /* ID of maximum bucket in use */
    //进入整个哈希表的模掩码
    uint32      high_mask;      /* mask to modulo into entire table */
    //进入低于半个哈希表的模掩码
    uint32      low_mask;       /* mask to modulo into lower half of table */
    /* These fields are fixed at hashtable creation */
    //下面这些字段在哈希表创建时已固定
    //哈希键大小(以字节为单位)
    Size        keysize;        /* hash key length in bytes */
    //所有用户元素大小(以字节为单位)
    Size        entrysize;      /* total user element size in bytes */
    //分区个数(2的幂),或者为0
    long        num_partitions; /* # partitions (must be power of 2), or 0 */
    //目标的填充因子
    long        ffactor;        /* target fill factor */
    //如目录是固定大小,则该值为dsize的上限值
    long        max_dsize;      /* 'dsize' limit if directory is fixed size */
    //段大小,必须是2的幂
    long        ssize;          /* segment size --- must be power of 2 */
    //端偏移,ssize的对数
    int         sshift;         /* segment shift = log2(ssize) */
    //一次性分配的条目个数
    int         nelem_alloc;    /* number of entries to allocate at once */
#ifdef HASH_STATISTICS
    /*
     * Count statistics here.  NB: stats code doesn't bother with mutex, so
     * counts could be corrupted a bit in a partitioned table.
     * 统计信息.
     * 注意:统计相关的代码不会影响mutex,因此对于分区表,统计可能有一点点问题
     */
    long        accesses;
    long        collisions;
#endif
};
/*
 * Per-freelist data.
 * 空闲链表数据.
 *
 * In a partitioned hash table, each freelist is associated with a specific
 * set of hashcodes, as determined by the FREELIST_IDX() macro below.
 * nentries tracks the number of live hashtable entries having those hashcodes
 * (NOT the number of entries in the freelist, as you might expect).
 * 在一个分区哈希表中,每一个空闲链表与特定的hashcodes集合相关,通过下面的FREELIST_IDX()宏进行定义.
 * nentries跟踪有这些hashcodes的仍存活的hashtable条目个数.
 * (注意不要搞错,不是空闲的条目个数)
 *
 * The coverage of a freelist might be more or less than one partition, so it
 * needs its own lock rather than relying on caller locking.  Relying on that
 * wouldn't work even if the coverage was the same, because of the occasional
 * need to "borrow" entries from another freelist; see get_hash_entry().
 * 空闲链表的覆盖范围可能比一个分区多或少,因此需要自己的锁而不能仅仅依赖调用者的锁.
 * 依赖调用者锁在覆盖面一样的情况下也不会起效,因为偶尔需要从另一个自由列表“借用”条目,详细参见get_hash_entry()
 *
 * Using an array of FreeListData instead of separate arrays of mutexes,
 * nentries and freeLists helps to reduce sharing of cache lines between
 * different mutexes.
 * 使用FreeListData数组而不是一个独立的mutexes,nentries和freelists数组有助于减少不同mutexes之间的缓存线共享.
 */
typedef struct
{
    //该空闲链表的自旋锁
    slock_t     mutex;          /* spinlock for this freelist */
    //相关桶中的条目个数
    long        nentries;       /* number of entries in associated buckets */
    //空闲元素链
    HASHELEMENT *freeList;      /* chain of free elements */
} FreeListData;
/*
 * HASHELEMENT is the private part of a hashtable entry.  The caller's data
 * follows the HASHELEMENT structure (on a MAXALIGN'd boundary).  The hash key
 * is expected to be at the start of the caller's hash entry data structure.
 * HASHELEMENT是哈希表条目的私有部分.
 * 调用者的数据按照HASHELEMENT结构组织(位于MAXALIGN的边界).
 * 哈希键应位于调用者hash条目数据结构的开始位置.
 */
typedef struct HASHELEMENT
{
    //链接到相同桶中的下一个条目
    struct HASHELEMENT *link;   /* link to next entry in same bucket */
    //该条目的哈希函数结果
    uint32      hashvalue;      /* hash function result for this entry */
} HASHELEMENT;
/* Hash table header struct is an opaque type known only within dynahash.c */
//哈希表头部结构,非透明类型,用于dynahash.c
typedef struct HASHHDR HASHHDR;
/* Hash table control struct is an opaque type known only within dynahash.c */
//哈希表控制结构,非透明类型,用于dynahash.c
typedef struct HTAB HTAB;
/* Parameter data structure for hash_create */
//hash_create使用的参数数据结构
/* Only those fields indicated by hash_flags need be set */
//根据hash_flags标记设置相应的字段
typedef struct HASHCTL
{
    //分区个数(必须是2的幂)
    long        num_partitions; /* # partitions (must be power of 2) */
    //段大小
    long        ssize;          /* segment size */
    //初始化目录大小
    long        dsize;          /* (initial) directory size */
    //dsize上限
    long        max_dsize;      /* limit to dsize if dir size is limited */
    //填充因子
    long        ffactor;        /* fill factor */
    //哈希键大小(字节为单位)
    Size        keysize;        /* hash key length in bytes */
    //参见上述数据结构注释
    Size        entrysize;      /* total user element size in bytes */
    //
    HashValueFunc hash;         /* hash function */
    HashCompareFunc match;      /* key comparison function */
    HashCopyFunc keycopy;       /* key copying function */
    HashAllocFunc alloc;        /* memory allocator */
    MemoryContext hcxt;         /* memory context to use for allocations */
    //共享内存中的哈希头部结构地址
    HASHHDR    *hctl;           /* location of header in shared mem */
} HASHCTL;
/* A hash bucket is a linked list of HASHELEMENTs */
//哈希桶是HASHELEMENTs链表
typedef HASHELEMENT *HASHBUCKET;
/* A hash segment is an array of bucket headers */
//hash segment是桶数组
typedef HASHBUCKET *HASHSEGMENT;
/*
 * Hash functions must have this signature.
 * Hash函数必须有它自己的标识
 */
typedef uint32 (*HashValueFunc) (const void *key, Size keysize);
 /*
 * Key comparison functions must have this signature.  Comparison functions
 * return zero for match, nonzero for no match.  (The comparison function
 * definition is designed to allow memcmp() and strncmp() to be used directly
 * as key comparison functions.)
 * 哈希键对比函数必须有自己的标识.
 * 如匹配则对比函数返回0,不匹配返回非0.
 * (对比函数定义被设计为允许在对比键值时可直接使用memcmp()和strncmp())
 */
typedef int (*HashCompareFunc) (const void *key1, const void *key2,
 Size keysize);
 /*
 * Key copying functions must have this signature.  The return value is not
 * used.  (The definition is set up to allow memcpy() and strlcpy() to be
 * used directly.)
 * 键拷贝函数必须有自己的标识.
 * 返回值无用.
 */
typedef void *(*HashCopyFunc) (void *dest, const void *src, Size keysize);
/*
 * Space allocation function for a hashtable --- designed to match malloc().
 * Note: there is no free function API; can't destroy a hashtable unless you
 * use the default allocator.
 * 哈希表的恐惧分配函数 -- 被设计为与malloc()函数匹配.
 * 注意:这里没有释放函数API;不能销毁哈希表,除非使用默认的分配器.
 */
typedef void *(*HashAllocFunc) (Size request);

BufferLookupEnt

/* entry for buffer lookup hashtable */
//检索hash表的条目
typedef struct
{
    //磁盘page的tag
    BufferTag   key;            /* Tag of a disk page */
    //相关联的buffer ID
    int         id;             /* Associated buffer ID */
} BufferLookupEnt;

二、源码解读

BufTableInsert源码很简单,重点是需要理解HTAB数据结构,即全局变量SharedBufHash的数据结构.

/*
 * BufTableInsert
 *      Insert a hashtable entry for given tag and buffer ID,
 *      unless an entry already exists for that tag
 * BufTableInsert
 *      给定tag和buffer ID,插入到哈希表中,如该tag相应的条目已存在,则不处理.
 *
 * Returns -1 on successful insertion.  If a conflicting entry exists
 * already, returns the buffer ID in that entry.
 * 如成功插入,则返回-1.如冲突的条目已存在,则返回条目的buffer ID.
 *
 * Caller must hold exclusive lock on BufMappingLock for tag's partition
 * 调用者必须持有tag分区BufMappingLock独占锁.
 */
int
BufTableInsert(BufferTag *tagPtr, uint32 hashcode, int buf_id)
{
    BufferLookupEnt *result;
    bool        found;
    Assert(buf_id >= 0);        /* -1 is reserved for not-in-table */
    Assert(tagPtr->blockNum != P_NEW);  /* invalid tag */
    //static HTAB *SharedBufHash;
    result = (BufferLookupEnt *)
        hash_search_with_hash_value(SharedBufHash,
                                    (void *) tagPtr,
                                    hashcode,
                                    HASH_ENTER,
                                    &found);
    if (found)                  /* found something already in the table */
        return result->id;
    result->id = buf_id;
    return -1;
}

三、跟踪分析

测试脚本,查询数据表:

10:01:54 (xdb@[local]:5432)testdb=# select * from t1 limit 10;

启动gdb,设置断点

(gdb) 
(gdb) b BufTableInsert
Breakpoint 1 at 0x875c92: file buf_table.c, line 125.
(gdb) c
Continuing.
Breakpoint 1, BufTableInsert (tagPtr=0x7fff0cba0ef0, hashcode=1398580903, buf_id=101) at buf_table.c:125
125     Assert(buf_id >= 0);        /* -1 is reserved for not-in-table */
(gdb)

输入参数
tagPtr-BufferTag结构体
hashcode=1398580903,
buf_id=101

(gdb) p *tagPtr
$1 = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}

调用hash_search_with_hash_value,重点考察SharedBufHash(HTAB指针)

(gdb) n
129         hash_search_with_hash_value(SharedBufHash,

SharedBufHash

(gdb) p *SharedBufHash
$2 = {hctl = 0x7f5489004380, dir = 0x7f54890046d8, hash = 0xa3bf74 , match = 0x4791a0 , 
  keycopy = 0x479690 , alloc = 0x89250b , hcxt = 0x0, 
  tabname = 0x1fbf1d8 "Shared Buffer Lookup Table", isshared = true, isfixed = false, frozen = false, keysize = 20, 
  ssize = 256, sshift = 8}
(gdb)

SharedBufHash->hctl,HASHHDR结构体
freeList是一个数组
num_partitions是分区个数,默认为128

(gdb) p *SharedBufHash->hctl
$3 = {freeList = {{mutex = 0 '\000', nentries = 3, freeList = 0x7f5489119700}, {mutex = 0 '\000', nentries = 2, 
      freeList = 0x7f548912d828}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891418d8}, {mutex = 0 '\000', 
      nentries = 3, freeList = 0x7f5489155a00}, {mutex = 0 '\000', nentries = 8, freeList = 0x7f5489169a38}, {
      mutex = 0 '\000', nentries = 3, freeList = 0x7f548917dc00}, {mutex = 0 '\000', nentries = 5, 
      freeList = 0x7f5489191cb0}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891a5e00}, {mutex = 0 '\000', 
      nentries = 1, freeList = 0x7f54891b9f50}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891ce000}, {
      mutex = 0 '\000', nentries = 3, freeList = 0x7f54891e2100}, {mutex = 0 '\000', nentries = 5, 
      freeList = 0x7f54891f61b0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f548920a2d8}, {mutex = 0 '\000', 
      nentries = 2, freeList = 0x7f548921e428}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489232528}, {
      mutex = 0 '\000', nentries = 4, freeList = 0x7f54892465d8}, {mutex = 0 '\000', nentries = 3, 
      freeList = 0x7f548925a700}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548926e800}, {mutex = 0 '\000', 
      nentries = 5, freeList = 0x7f54892828b0}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489296a28}, {
      mutex = 0 '\000', nentries = 4, freeList = 0x7f54892aaad8}, {mutex = 0 '\000', nentries = 4, 
      freeList = 0x7f54892bebd8}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892d2cb0}, {mutex = 0 '\000', 
      nentries = 0, freeList = 0x7f54892e6e78}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f54892faf28}, {
      mutex = 0 '\000', nentries = 3, freeList = 0x7f548930f000}, {mutex = 0 '\000', nentries = 4, 
      freeList = 0x7f54893230d8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893371d8}, {mutex = 0 '\000', 
      nentries = 2, freeList = 0x7f548934b328}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f548935f450}, {
      mutex = 0 '\000', nentries = 4, freeList = 0x7f54893734d8}, {mutex = 0 '\000', nentries = 3, 
      freeList = 0x7f5489387600}}, dsize = 512, nsegs = 512, max_bucket = 131071, high_mask = 262143, low_mask = 131071, 
  keysize = 20, entrysize = 24, num_partitions = 128, ffactor = 1, max_dsize = 512, ssize = 256, sshift = 8, 
  nelem_alloc = 51}
(gdb) 
(gdb) p *SharedBufHash->hctl->freeList[0].freeList
$4 = {link = 0x7f54891196d8, hashvalue = 0}
(gdb) p *SharedBufHash->hctl->freeList[0].freeList.link
$5 = {link = 0x7f54891196b0, hashvalue = 0}
(gdb)

SharedBufHash->dir,段开始目录

(gdb) p *SharedBufHash->dir
$6 = (HASHSEGMENT) 0x7f5489005700
(gdb) p **SharedBufHash->dir
$7 = (HASHBUCKET) 0x0
(gdb) p *SharedBufHash->dir[0]
$8 = (HASHBUCKET) 0x0
(gdb) p *SharedBufHash->dir[1]
$9 = (HASHBUCKET) 0x0
(gdb)

哈希函数为tag_hash
哈希键比较函数是memcmp @plt
哈希键拷贝函数是memcpy @plt
内存分配器是ShmemAllocNoError
内存上下文为NULL
表名是Shared Buffer Lookup Table
共享内存(isshared=T)
非固定/非冻结/哈希键长度为20B/段大小为256/段偏移为8

执行hash_search_with_hash_value,查看相关信息

(gdb) n
128     result = (BufferLookupEnt *)
(gdb) 
135     if (found)                  /* found something already in the table */
(gdb) p *SharedBufHash
$10 = {hctl = 0x7f5489004380, dir = 0x7f54890046d8, hash = 0xa3bf74 , match = 0x4791a0 , 
  keycopy = 0x479690 , alloc = 0x89250b , hcxt = 0x0, 
  tabname = 0x1fbf1d8 "Shared Buffer Lookup Table", isshared = true, isfixed = false, frozen = false, keysize = 20, 
  ssize = 256, sshift = 8}
(gdb) p *SharedBufHash->hctl
$11 = {freeList = {{mutex = 0 '\000', nentries = 3, freeList = 0x7f5489119700}, {mutex = 0 '\000', nentries = 2, 
      freeList = 0x7f548912d828}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891418d8}, {mutex = 0 '\000', 
      nentries = 3, freeList = 0x7f5489155a00}, {mutex = 0 '\000', nentries = 8, freeList = 0x7f5489169a38}, {
      mutex = 0 '\000', nentries = 3, freeList = 0x7f548917dc00}, {mutex = 0 '\000', nentries = 5, 
      freeList = 0x7f5489191cb0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54891a5dd8}, {mutex = 0 '\000', 
      nentries = 1, freeList = 0x7f54891b9f50}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f54891ce000}, {
      mutex = 0 '\000', nentries = 3, freeList = 0x7f54891e2100}, {mutex = 0 '\000', nentries = 5, 
      freeList = 0x7f54891f61b0}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f548920a2d8}, {mutex = 0 '\000', 
      nentries = 2, freeList = 0x7f548921e428}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489232528}, {
      mutex = 0 '\000', nentries = 4, freeList = 0x7f54892465d8}, {mutex = 0 '\000', nentries = 3, 
      freeList = 0x7f548925a700}, {mutex = 0 '\000', nentries = 3, freeList = 0x7f548926e800}, {mutex = 0 '\000', 
      nentries = 5, freeList = 0x7f54892828b0}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f5489296a28}, {
      mutex = 0 '\000', nentries = 4, freeList = 0x7f54892aaad8}, {mutex = 0 '\000', nentries = 4, 
      freeList = 0x7f54892bebd8}, {mutex = 0 '\000', nentries = 5, freeList = 0x7f54892d2cb0}, {mutex = 0 '\000', 
      nentries = 0, freeList = 0x7f54892e6e78}, {mutex = 0 '\000', nentries = 2, freeList = 0x7f54892faf28}, {
      mutex = 0 '\000', nentries = 3, freeList = 0x7f548930f000}, {mutex = 0 '\000', nentries = 4, 
      freeList = 0x7f54893230d8}, {mutex = 0 '\000', nentries = 4, freeList = 0x7f54893371d8}, {mutex = 0 '\000', 
      nentries = 2, freeList = 0x7f548934b328}, {mutex = 0 '\000', nentries = 1, freeList = 0x7f548935f450}, {
      mutex = 0 '\000', nentries = 4, freeList = 0x7f54893734d8}, {mutex = 0 '\000', nentries = 3, 
      freeList = 0x7f5489387600}}, dsize = 512, nsegs = 512, max_bucket = 131071, high_mask = 262143, low_mask = 131071, 
  keysize = 20, entrysize = 24, num_partitions = 128, ffactor = 1, max_dsize = 512, ssize = 256, sshift = 8, 
  nelem_alloc = 51}
(gdb) p **SharedBufHash->dir
$12 = (HASHBUCKET) 0x0
(gdb) p *SharedBufHash->dir
$13 = (HASHSEGMENT) 0x7f5489005700
(gdb) p result
$14 = (BufferLookupEnt *) 0x7f54891a5e10
(gdb) p *result
$15 = {key = {rnode = {spcNode = 1663, dbNode = 16402, relNode = 51439}, forkNum = MAIN_FORKNUM, blockNum = 0}, id = 0}
(gdb) p found
$16 = false

完成调用,返回

(gdb) n
138     result->id = buf_id;
(gdb) 
140     return -1;
(gdb) 
141 }
(gdb) 
BufferAlloc (smgr=0x204f430, relpersistence=112 'p', forkNum=MAIN_FORKNUM, blockNum=0, strategy=0x0, 
    foundPtr=0x7fff0cba0fa3) at bufmgr.c:1216
1216            if (buf_id >= 0)
(gdb)

“PostgreSQL中BufTableInsert函数有什么作用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注创新互联网站,小编将为大家输出更多高质量的实用文章!


新闻标题:PostgreSQL中BufTableInsert函数有什么作用
浏览路径:http://cdxtjz.cn/article/gpdjop.html

其他资讯