189 8069 5689

怎么使用Scala语言

这篇文章主要讲解了“怎么使用Scala语言”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Scala语言”吧!

创新互联是专业的盐亭网站建设公司,盐亭接单;提供网站制作、做网站,网页设计,网站设计,建网站,PHP网站建设等专业做网站服务;采用PHP框架,可快速的进行盐亭网站开发网页制作和功能扩展;专业做搜索引擎喜爱的网站,专业的做网站团队,希望更多企业前来合作!

为什么递归会受到忽视

为 了回答这一问题,必须先说到编程范式。在所有的编程范式中,面向对象编程(Object-Oriented  Programming)无疑是***的赢家。看看网上的招聘启事,无一例外,会要求应聘者熟练掌握面向对象编程。但其实面向对象编程并不是一种严格意义上  的编程范式,严格意义上的编程范式分为:命令式编程(Imperative Programming)、函数式编程(Functional  Programming)和逻辑式编程(Logic  Programming)。面向对象编程只是上述几种范式的一个交叉产物,更多的还是继承了命令式编程的基因。遗憾的是,在长期的教学过程中,只有命令式   编程得到了强调,那就是程序员要告诉计算机应该怎么做,而不是告诉计算机做什么。而递归则通过灵巧的函数定义,告诉计算机做什么。因此在使用命令式编程思   维的程序中,不得不说,这是现在多数程序采用的编程方式,递归出镜的几率很少,而在函数式编程中,大家可以随处见到递归的方式。下面,我们就通过实例,为  大家展示递归如何作为一种普遍方式,来解决编程问题的。

一组简单的例子

如何为一组整数数列求和?按照通常命令式编程的思 维,我们会采用循环,依次遍历列表中的每个元素进行累加,最终给出求和结果。这样的程序不难写,稍  微具备一点编程经验的人在一分钟之内就能写出来。这次我们换个思维,如何用递归的方式求和?为此,我们不妨把问题简化一点,假设数列包含 N  个数,如果我们已经知道了后续 N – 1 个数的和,那么整个数列的和即为***个数加上后续 N – 1 个数的和,依此类推,我们可以以同样的方式为  N – 1  个数继续求和,直到数列为空,显然,空数列的和为零。听起来复杂,事实上我们可以用一句话来总结:一个数列的和即为数列中的***个数加上由后续数字组成的  数列的和。现在,让我们用 Scala 语言把这个想法表达出来。

清单 1. 数列求和

//xs.head 返回列表里的头元素,即***个元素 //xs.tail 返回除头元素外的剩余元素组成的列表 def sum(xs: List[Int]): Int =  if (xs.isEmpty) 0 else xs.head + sum(xs.tail)

大家可以看到,我们只使用一行程序,就将上面求和的方法表达出来了,而且这一行程序看上去简单易懂。尽量少写代码,这也是 Scala  语言的设计哲学之一,较少的代码量意味着写起来更加容易,读起来更加易懂,同时代码出错的概率也会降低。同样的程序,使用 Scala  语言写出的代码量通常会比 Java 少一半甚至更多。

上述这个数列求和的例子并不是特别的,它代表了递归对于列表的一种普遍的处理方式,即对一个列表的操作,可转化为对***个元素,及剩余列表的相同操 作。比如我们可以用同样的方式求一个数列中的***值。我们假设已经知道了除***个元素外剩余数列的***值,那么整个数列的***值即为***个元素和剩余数列 ***值中的大者。这里需要注意的是对于一个空数列求***值是没有意义的,所以我们需要向外抛出一个异常。当数列只包含一个元素时,***值就为这个元素本 身,这种情况是我们这个递归的边界条件。一个递归算法,必须要有这样一个边界条件,否则会一直递归下去,形成死循环。

清单 2. 求***值

def max(xs: List[Int]): Int = {    if (xs.isEmpty)      throw new java.util.NoSuchElementException    if (xs.size == 1)      xs.head    else      if (xs.head > max(xs.tail)) xs.head else max(xs.tail) }v

同样的方式,我们也可以求一个数列中的最小值,作为一个练习,读者可下去自行实现。

让我们再看一个例子:如何反转一个字符串?比如给定一个字符串"abcd",经过反转之后变为 "dcba"。同样的,我们可以做一个大胆的假设,假设后续字符串已经反转过来,那么接上***个字符,整个字符串就反转过来了。对于一个只有一个字符的字符串,不需要反转,这是我们这个递归算法的边界条件。程序实现如下:

清单 3. 反转字符串

def reverse(xs: String): String = if (xs.length == 1) xs else reverse(xs.tail) + xs.head

***一个例子是经典的快速排序,读者可能会觉得这个例子算不上简单,但是我们会看到,使用递归的方式,再加上 Scala 简洁的语言特性,我们只需要短短几行程序,就可以实现快速排序算法。 快速排序算法的核心思想是:在一个无序列表中选择一个值,根据该值将列表分为两部分,比该值小的那一部分排在前面,比该值大的部分排在后面。对于这两部分 各自使用同样的方式进行排序,直到他们为空,显然,我们认为一个空的列表即为一个排好序的列表,这就是这个算法中的边界条件。为了方便起见,我们选择*** 个元素作为将列表分为两部分的值。程序实现如下:

清单 4. 快速排序

def quickSort(xs: List[Int]): List[Int] = {    if (xs.isEmpty) xs    else      quickSort(xs.filter(x=>xx>xs.head)) }

当然,为了使程序更加简洁,作者在这里使用了列表中的一些方法:给列表增加一个元素,连接两个列表以及过滤一个列表,并在其中使用了 lambda 表达式。但这一切都使程序变得更符合算法的核心思想,更加易读。

尾递归

从上面的例子中我们可以看到,使用递归方式写出的程序通常通俗易懂,这其实代表这两种编程范式的不同,命令式编程范式倾向于使用循环,告诉计算机怎 么做,而函数式编程范式则使用递归,告诉计算机做什么。习惯于命令式编程范式的程序员还有一个担忧:相比循环,递归不是存在效率问题吗?每一次递归调用, 都会分配一个新的函数栈,如果递归嵌套很深,容易出现栈溢出的问题。比如下面计算阶乘的递归程序:

清单 5. 递归求阶乘

def factorial(n: Int): Int = if (n == 0) 1 else n * factorial(n - 1)

当递归调用 n – 1的阶乘时,由于需要保存前面的 n,必须分配一个新的函数栈,这样当 n很大时,函数栈将很快被耗尽。然而尾递归能帮我们解决这个问题,所谓尾递归是指在函数调用的***一步,只调用该递归函数本身,此时,由于无需记住其他变量,当前的函数栈可以被重复使用。上面的程序只需稍微改造一下,既可以变成尾递归式的程序,在效率上,和循环是等价的。

清单 6. 尾递归求阶乘

def factorial(n: Int): Int = {    @tailrec    def loop(acc: Int, n: Int): Int =      if (n == 0) acc else loop(n * acc, n - 1)      loop(1, n) }

在上面的程序中,我们在阶乘函数内部定义了一个新的递归函数,该函数***一步要么返回结果,要么调用该递归函数本身,所以这是一个尾递归函数。该函数多出一个变量 acc,每次递归调用都会更新该变量,直到递归边界条件满足时返回该值,即为***的计算结果。这是一种通用的将非尾递归函数转化为尾递归函数的方法,大家可多加练习,掌握这一方法。对于尾递归,Scala 语言特别增加了一个注释 @tailrec,该注释可以确保程序员写出的程序是正确的尾递归程序,如果由于疏忽大意,写出的不是一个尾递归程序,则编译器会报告一个编译错误,提醒程序员修改自己的代码。

一道面试题

也许有的读者看了上面的例子后,还是感到不能信服:虽然使用递归会让程序变得简洁易懂,但我用循环也一样可以实现,大不了多几行代码而已,而且我还 不用知道什么尾递归,写出的程序就是效率***的。那我们一起来看看下面这个问题:有趣的零钱兑换问题。题目大致如下:假设某国的货币有若干面值,现给一张 大面值的货币要兑换成零钱,问有多少种兑换方式。这个问题经常被各大公司作为一道面试题,不知难倒了多少同学,下面我给出该问题的递归解法,读者们可以试 试该问题的非递归解法,看看从程序的易读性,及代码数量上,两者会有多大差别。该问题的递归解法思路很简单:首先确定边界条件,如果要兑换的钱数为  0,那么返回 1,即只有一种兑换方法:没法兑换。这里要注意的是该问题计算所有的兑换方法,无法兑换也算一种方法。如果零钱种类为 0 或钱数小于  0,没有任何方式进行兑换,返回  0。我们可以把找零的方法分为两类:使用不包含***枚硬币(零钱)所有的零钱进行找零,使用包含***枚硬币(零钱)的所有零钱进行找零,两者之和即为所有 的找零方式。***种找零方式总共有 countChange(money, coins.tail)种,第二种找零方式等价为对于 money – conins.head进行同样的兑换,则这种兑换方式有 countChange(money - coins.head, coins)种,两者之和即为所有的零钱兑换方式。

清单 7. 零钱兑换问题的递归解法

def countChange(money: Int, coins: List[Int]): Int = {   if (money == 0)     1   else if (coins.size == 0 || money < 0)     0   else     countChange(money, coins.tail) + countChange(money - coins.head, coins) }

感谢各位的阅读,以上就是“怎么使用Scala语言”的内容了,经过本文的学习后,相信大家对怎么使用Scala语言这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


网页题目:怎么使用Scala语言
转载来于:http://cdxtjz.cn/article/gsoije.html

其他资讯