189 8069 5689

java二叉树部分代码,JAVA 二叉树

java如何创建一颗二叉树

计算机科学中,二叉树是每个结点最多有两个子树的有序树。通常子树的根被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用作二叉查找树和二叉堆或是二叉排序树。

革吉网站制作公司哪家好,找创新互联公司!从网页设计、网站建设、微信开发、APP开发、响应式网站建设等网站项目制作,到程序开发,运营维护。创新互联公司2013年开创至今到现在10年的时间,我们拥有了丰富的建站经验和运维经验,来保证我们的工作的顺利进行。专注于网站建设就选创新互联公司

二叉树的每个结点至多只有二棵子树(不存在度大于2的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第i层至多有2的 i -1次方个结点;深度为k的二叉树至多有2^(k) -1个结点;对任何一棵二叉树T,如果其终端结点数(即叶子结点数)为n0,度为2的结点数为n2,则n0 = n2 + 1。

树是由一个或多个结点组成的有限集合,其中:

⒈必有一个特定的称为根(ROOT)的结点;

二叉树

⒉剩下的结点被分成n=0个互不相交的集合T1、T2、......Tn,而且, 这些集合的每一个又都是树。树T1、T2、......Tn被称作根的子树(Subtree)。

树的递归定义如下:(1)至少有一个结点(称为根)(2)其它是互不相交的子树

1.树的度——也即是宽度,简单地说,就是结点的分支数。以组成该树各结点中最大的度作为该树的度,如上图的树,其度为2;树中度为零的结点称为叶结点或终端结点。树中度不为零的结点称为分枝结点或非终端结点。除根结点外的分枝结点统称为内部结点。

2.树的深度——组成该树各结点的最大层次。

3.森林——指若干棵互不相交的树的集合,如上图,去掉根结点A,其原来的二棵子树T1、T2、T3的集合{T1,T2,T3}就为森林;

4.有序树——指树中同层结点从左到右有次序排列,它们之间的次序不能互换,这样的树称为有序树,否则称为无序树。

树的表示

树的表示方法有许多,常用的方法是用括号:先将根结点放入一对圆括号中,然后把它的子树由左至右的顺序放入括号中,而对子树也采用同样的方法处理;同层子树与它的根结点用圆括号括起来,同层子树之间用逗号隔开,最后用闭括号括起来。如右图可写成如下形式:

二叉树

(a( b(d,e), c( f( ,g(h,i) ), )))

java构建二叉树算法

//******************************************************************************************************//

//*****本程序包括简单的二叉树类的实现和前序,中序,后序,层次遍历二叉树算法,*******//

//******以及确定二叉树的高度,制定对象在树中的所处层次以及将树中的左右***********//

//******孩子节点对换位置,返回叶子节点个数删除叶子节点,并输出所删除的叶子节点**//

//*******************************CopyRight By phoenix*******************************************//

//************************************Jan 12,2008*************************************************//

//****************************************************************************************************//

public class BinTree {

public final static int MAX=40;

private Object data; //数据元数

private BinTree left,right; //指向左,右孩子结点的链

BinTree []elements = new BinTree[MAX];//层次遍历时保存各个节点

int front;//层次遍历时队首

int rear;//层次遍历时队尾

public BinTree()

{

}

public BinTree(Object data)

{ //构造有值结点

this.data = data;

left = right = null;

}

public BinTree(Object data,BinTree left,BinTree right)

{ //构造有值结点

this.data = data;

this.left = left;

this.right = right;

}

public String toString()

{

return data.toString();

}//前序遍历二叉树

public static void preOrder(BinTree parent){

if(parent == null)

return;

System.out.print(parent.data+" ");

preOrder(parent.left);

preOrder(parent.right);

}//中序遍历二叉树

public void inOrder(BinTree parent){

if(parent == null)

return;

inOrder(parent.left);

System.out.print(parent.data+" ");

inOrder(parent.right);

}//后序遍历二叉树

public void postOrder(BinTree parent){

if(parent == null)

return;

postOrder(parent.left);

postOrder(parent.right);

System.out.print(parent.data+" ");

}// 层次遍历二叉树

public void LayerOrder(BinTree parent)

{

elements[0]=parent;

front=0;rear=1;

while(frontrear)

{

try

{

if(elements[front].data!=null)

{

System.out.print(elements[front].data + " ");

if(elements[front].left!=null)

elements[rear++]=elements[front].left;

if(elements[front].right!=null)

elements[rear++]=elements[front].right;

front++;

}

}catch(Exception e){break;}

}

}//返回树的叶节点个数

public int leaves()

{

if(this == null)

return 0;

if(left == nullright == null)

return 1;

return (left == null ? 0 : left.leaves())+(right == null ? 0 : right.leaves());

}//结果返回树的高度

public int height()

{

int heightOfTree;

if(this == null)

return -1;

int leftHeight = (left == null ? 0 : left.height());

int rightHeight = (right == null ? 0 : right.height());

heightOfTree = leftHeightrightHeight?rightHeight:leftHeight;

return 1 + heightOfTree;

}

//如果对象不在树中,结果返回-1;否则结果返回该对象在树中所处的层次,规定根节点为第一层

public int level(Object object)

{

int levelInTree;

if(this == null)

return -1;

if(object == data)

return 1;//规定根节点为第一层

int leftLevel = (left == null?-1:left.level(object));

int rightLevel = (right == null?-1:right.level(object));

if(leftLevel0rightLevel0)

return -1;

levelInTree = leftLevelrightLevel?rightLevel:leftLevel;

return 1+levelInTree;

}

//将树中的每个节点的孩子对换位置

public void reflect()

{

if(this == null)

return;

if(left != null)

left.reflect();

if(right != null)

right.reflect();

BinTree temp = left;

left = right;

right = temp;

}// 将树中的所有节点移走,并输出移走的节点

public void defoliate()

{

String innerNode = "";

if(this == null)

return;

//若本节点是叶节点,则将其移走

if(left==nullright == null)

{

System.out.print(this + " ");

data = null;

return;

}

//移走左子树若其存在

if(left!=null){

left.defoliate();

left = null;

}

//移走本节点,放在中间表示中跟移走...

innerNode += this + " ";

data = null;

//移走右子树若其存在

if(right!=null){

right.defoliate();

right = null;

}

}

/**

* @param args

*/

public static void main(String[] args) {

// TODO Auto-generated method stub

BinTree e = new BinTree("E");

BinTree g = new BinTree("G");

BinTree h = new BinTree("H");

BinTree i = new BinTree("I");

BinTree d = new BinTree("D",null,g);

BinTree f = new BinTree("F",h,i);

BinTree b = new BinTree("B",d,e);

BinTree c = new BinTree("C",f,null);

BinTree tree = new BinTree("A",b,c);

System.out.println("前序遍历二叉树结果: ");

tree.preOrder(tree);

System.out.println();

System.out.println("中序遍历二叉树结果: ");

tree.inOrder(tree);

System.out.println();

System.out.println("后序遍历二叉树结果: ");

tree.postOrder(tree);

System.out.println();

System.out.println("层次遍历二叉树结果: ");

tree.LayerOrder(tree);

System.out.println();

System.out.println("F所在的层次: "+tree.level("F"));

System.out.println("这棵二叉树的高度: "+tree.height());

System.out.println("--------------------------------------");

tree.reflect();

System.out.println("交换每个节点的孩子节点后......");

System.out.println("前序遍历二叉树结果: ");

tree.preOrder(tree);

System.out.println();

System.out.println("中序遍历二叉树结果: ");

tree.inOrder(tree);

System.out.println();

System.out.println("后序遍历二叉树结果: ");

tree.postOrder(tree);

System.out.println();

System.out.println("层次遍历二叉树结果: ");

tree.LayerOrder(tree);

System.out.println();

System.out.println("F所在的层次: "+tree.level("F"));

System.out.println("这棵二叉树的高度: "+tree.height());

}

建立一个二叉树,附带查询代码,JAVA代码

import java.util.ArrayList;

// 树的一个节点

class TreeNode {

Object _value = null; // 他的值

TreeNode _parent = null; // 他的父节点,根节点没有PARENT

ArrayList _childList = new ArrayList(); // 他的孩子节点

public TreeNode( Object value, TreeNode parent ){

this._parent = parent;

this._value = value;

}

public TreeNode getParent(){

return _parent;

}

public String toString() {

return _value.toString();

}

}

public class Tree {

// 给出宽度优先遍历的值数组,构建出一棵多叉树

// null 值表示一个层次的结束

// "|" 表示一个层次中一个父亲节点的孩子输入结束

// 如:给定下面的值数组:

// { "root", null, "left", "right", null }

// 则构建出一个根节点,带有两个孩子("left","right")的树

public Tree( Object[] values ){

// 创建根

_root = new TreeNode( values[0], null );

// 创建下面的子节点

TreeNode currentParent = _root; // 用于待创建节点的父亲

//TreeNode nextParent = null;

int currentChildIndex = 0; // 表示 currentParent 是他的父亲的第几个儿子

//TreeNode lastNode = null; // 最后一个创建出来的TreeNode,用于找到他的父亲

for ( int i = 2; i values.length; i++ ){

// 如果null ,表示下一个节点的父亲是当前节点的父亲的第一个孩子节点

if ( values[i] == null ){

currentParent = (TreeNode)currentParent._childList.get(0);

currentChildIndex = 0;

continue;

}

// 表示一个父节点的所有孩子输入完毕

if ( values[i].equals("|") ){

if ( currentChildIndex+1 currentParent._childList.size() ){

currentChildIndex++;

currentParent = (TreeNode)currentParent._parent._childList.get(currentChildIndex);

}

continue;

}

TreeNode child = createChildNode( currentParent, values[i] );

}

}

TreeNode _root = null;

public TreeNode getRoot(){

return _root;

}

/**

// 按宽度优先遍历,打印出parent子树所有的节点

private void printSteps( TreeNode parent, int currentDepth ){

for ( int i = 0; i parent._childList.size(); i++ ){

TreeNode child = (TreeNode)parent._childList.get(i);

System.out.println(currentDepth+":"+child);

}

if ( parent._childList.size() != 0 ) System.out.println(""+null);// 为了避免叶子节点也会打印null

//打印 parent 同层的节点的孩子

if ( parent._parent != null ){ // 不是root

int i = 1;

while ( i parent._parent._childList.size() ){// parent 的父亲还有孩子

TreeNode current = (TreeNode)parent._parent._childList.get(i);

printSteps( current, currentDepth );

i++;

}

}

// 递归调用,打印所有节点

for ( int i = 0; i parent._childList.size(); i++ ){

TreeNode child = (TreeNode)parent._childList.get(i);

printSteps( child, currentDepth+1 );

}

}

// 按宽度优先遍历,打印出parent子树所有的节点

public void printSteps(){

System.out.println(""+_root);

System.out.println(""+null);

printSteps(_root, 1 );

}**/

// 将给定的值做为 parent 的孩子,构建节点

private TreeNode createChildNode( TreeNode parent, Object value ){

TreeNode child = new TreeNode( value , parent );

parent._childList.add( child );

return child;

}

public static void main(String[] args) {

Tree tree = new Tree( new Object[]{ "root", null,

"left", "right", null,

"l1","l2","l3", "|", "r1","r2",null } );

//tree.printSteps();

System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(0) );

System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(1) );

System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(0) )._childList.get(2) );

System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(0) );

System.out.println(""+ ( (TreeNode)tree.getRoot()._childList.get(1) )._childList.get(1) );

}

}

java:二叉树添加和查询方法

package arrays.myArray;

public class BinaryTree {

private Node root;

// 添加数据

public void add(int data) {

// 递归调用

if (null == root)

root = new Node(data, null, null);

else

addTree(root, data);

}

private void addTree(Node rootNode, int data) {

// 添加到左边

if (rootNode.data data) {

if (rootNode.left == null)

rootNode.left = new Node(data, null, null);

else

addTree(rootNode.left, data);

} else {

// 添加到右边

if (rootNode.right == null)

rootNode.right = new Node(data, null, null);

else

addTree(rootNode.right, data);

}

}

// 查询数据

public void show() {

showTree(root);

}

private void showTree(Node node) {

if (node.left != null) {

showTree(node.left);

}

System.out.println(node.data);

if (node.right != null) {

showTree(node.right);

}

}

}

class Node {

int data;

Node left;

Node right;

public Node(int data, Node left, Node right) {

this.data = data;

this.left = left;

this.right = right;

}

}

用JAVA写二叉树

/**

* [Tree2.java] Create on 2008-10-20 下午03:03:24

* Copyright (c) 2008 by iTrusChina.

*/

/**

* @author WangXuanmin

* @version 0.10

*/

public class Tree2Bef {

private StringBuffer bef=new StringBuffer();

//传入中序遍历和后序遍历,返回前序遍历字串

public String getBef(String mid, String beh) {

//若节点存在则向bef中添加该节点,继续查询该节点的左子树和右子树

if (root(mid, beh) != -1) {

int rootindex=root(mid, beh);

char root=mid.charAt(rootindex);

bef.append(root);

System.out.println(bef.toString());

String mleft, mright;

mleft = mid.substring(0,rootindex);

mright = mid.substring(rootindex+1);

getBef(mleft,beh);

getBef(mright,beh);

}

//所有节点查询完毕,返回前序遍历值

return bef.toString();

}

//从中序遍历中根据后序遍历查找节点索引值index

private int root(String mid, String beh) {

char[] midc = mid.toCharArray();

char[] behc = beh.toCharArray();

for (int i = behc.length-1; i -1; i--) {

for (int j = 0; j midc.length; j++) {

if (behc[i] == midc[j])

return j;

}

}

return -1;

}

public static void main(String[] args) {

Tree2Bef tree=new Tree2Bef();

String mid="84925163A7B";

String bef="894526AB731";

System.out.println(tree.getBef(mid,bef));

}

}

树结构如图:

1

|-------|

2 3

|---| |---|

4 5 6 7

|-| |-|

8 9 A B


当前名称:java二叉树部分代码,JAVA 二叉树
转载注明:http://cdxtjz.cn/article/hesghp.html

其他资讯