189 8069 5689

C++怎么解决地牢游戏问题

这篇文章主要讲解了“C++怎么解决地牢游戏问题”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C++怎么解决地牢游戏问题”吧!

创新互联专注于企业成都营销网站建设、网站重做改版、霍邱网站定制设计、自适应品牌网站建设、H5开发商城开发、集团公司官网建设、成都外贸网站建设公司、高端网站制作、响应式网页设计等建站业务,价格优惠性价比高,为霍邱等各大城市提供网站开发制作服务。

地牢游戏

这道王子救公主的题还是蛮新颖的,我最开始的想法是比较右边和下边的数字的大小,去大的那个,但是这个算法对某些情况不成立,比如下面的情况:

1 (K)-33
0-20
-3-3-3 (P)

如果按我的那种算法走的路径为 1 -> 0 -> -2 -> 0 -> -3, 这样的话骑士的起始血量要为5,而正确的路径应为 1 -> -3 -> 3 -> 0 -> -3, 这样骑士的骑士血量只需为3。无奈只好上网看大神的解法,发现统一都是用动态规划 Dynamic Programming 来做,建立一个二维数组 dp,其中 dp[i][j] 用来表示当前位置 (i, j) 出发的起始血量,最先处理的是公主所在的房间的起始生命值,然后慢慢向第一个房间扩散,不断的得到各个位置的最优的生命值。逆向推正是本题的精髓所在啊,仔细想想也是,如果从起始位置开始遍历,我们并不知道初始时应该初始化的血量,但是到达公主房间后,我们知道血量至少不能小于1,如果公主房间还需要掉血的话,那么掉血后剩1才能保证起始位置的血量最小。那么下面来推导状态转移方程,首先考虑每个位置的血量是由什么决定的,骑士会挂主要是因为去了下一个房间时,掉血量大于本身的血值,而能去的房间只有右边和下边,所以当前位置的血量是由右边和下边房间的可生存血量决定的,进一步来说,应该是由较小的可生存血量决定的,因为较我们需要起始血量尽可能的少,因为我们是逆着往回推,骑士逆向进入房间后 PK 后所剩的血量就是骑士正向进入房间时 pk 前的起始血量。所以用当前房间的右边和下边房间中骑士的较小血量减去当前房间的数字,如果是负数或着0,说明当前房间是正数,这样骑士进入当前房间后的生命值是1就行了,因为不会减血。而如果差是正数的话,当前房间的血量可能是正数也可能是负数,但是骑士进入当前房间后的生命值就一定要是这个差值。所以我们的状态转移方程是 dp[i][j] = max(1, min(dp[i+1][j], dp[i][j+1]) - dungeon[i][j])。为了更好的处理边界情况,我们的二维 dp 数组比原数组的行数列数均多1个,先都初始化为整型数最大值 INT_MAX,由于我们知道到达公主房间后,骑士火拼完的血量至少为1,那么此时公主房间的右边和下边房间里的数字我们就都设置为1,这样到达公主房间的生存血量就是1减去公主房间的数字和1相比较,取较大值,就没有问题了,代码如下:

解法一:

class Solution {
public:
    int calculateMinimumHP(vector>& dungeon) {
        int m = dungeon.size(), n = dungeon[0].size();
        vector> dp(m + 1, vector(n + 1, INT_MAX));
        dp[m][n - 1] = 1; dp[m - 1][n] = 1;
        for (int i = m - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                dp[i][j] = max(1, min(dp[i + 1][j], dp[i][j + 1]) - dungeon[i][j]);
            }
        }
        return dp[0][0];
    }
};

我们可以对空间进行优化,使用一个一维的 dp 数组,并且不停的覆盖原有的值,参见代码如下:

解法二:

class Solution {
public:
    int calculateMinimumHP(vector>& dungeon) {
        int m = dungeon.size(), n = dungeon[0].size();
        vector dp(n + 1, INT_MAX);
        dp[n - 1] = 1;
        for (int i = m - 1; i >= 0; --i) {
            for (int j = n - 1; j >= 0; --j) {
                dp[j] = max(1, min(dp[j], dp[j + 1]) - dungeon[i][j]);
            }
        }
        return dp[0];
    }
};

感谢各位的阅读,以上就是“C++怎么解决地牢游戏问题”的内容了,经过本文的学习后,相信大家对C++怎么解决地牢游戏问题这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是创新互联,小编将为大家推送更多相关知识点的文章,欢迎关注!


网页名称:C++怎么解决地牢游戏问题
URL地址:http://cdxtjz.cn/article/ppgphd.html

其他资讯